Multichannel seismic, acoustic and bathymetric data from the Lower Congo Basin

Effective seal breaching is a major contributor to methane seepage from deep sea sediments as it ensures the migration of gas and liquid hydrocarbons from buried reservoirs to the seafloor. This study shows two giant pockmarks on the lower slope of the Lower Congo Basin associated with salt-tectonic faulting and the buried Pliocene Congo deep sea fan. The progressive burial of Pliocene fan deposits results in mobilization of methane from gas hydrates at the Base of the Gas Hydrate Stability Zone which migrates through the hemipelagic seal towards the seafloor along salt-induced faults. Seal-breaching in this part of the Lower Congo Basin relies solely on salt-tectonic faulting contrasting with upslope seafloor seepage settings where polygonal faulting within the hemipelagic seal occurs. Dedicated 2D and 3D seismic and acoustic surveying allows the detailed reconstruction of the evolution of pockmarks which appear to have been active for the last 640 kyr. We also show indications that the modern seafloor depression formed due to reduced sedimentation in the vicinity of active seepage. The presented seafloor seepage features illustrate the mode of gas release from the Pliocene fan in the Lower Congo Basin, which contrasts with previously investigated seepage environments further upslope.

Data and Resources

This dataset has no data

Cite this as

Wenau, Stefan, Spieß, Volkhard, Pape, Thomas, Fekete, Noemi (2017). Dataset: Multichannel seismic, acoustic and bathymetric data from the Lower Congo Basin. https://doi.org/10.1594/PANGAEA.875093

DOI retrieved: 2017

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-NC-ND-3.0
Source https://doi.org/10.1594/PANGAEA.875093
Author Wenau, Stefan
Given Name Stefan
Family Name Wenau
More Authors
Spieß, Volkhard
Pape, Thomas
Fekete, Noemi
Source Creation 2017
Publication Year 2017
Resource Type application/zip - filename: Wenau-etal_2017
Subject Areas
Name: Lithosphere

Related Identifiers
Title: Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin
Identifier: https://doi.org/10.1016/j.marpetgeo.2017.02.030
Type: DOI
Relation: IsSupplementTo
Year: 2017
Source: Marine and Petroleum Geology
Authors: Wenau Stefan , Spieß Volkhard , Pape Thomas , Fekete Noemi .