Congo River particulate and dissolved organic carbon concentrations, isotope compositions (δ¹³C, d15N, D14C), and particulate GDGT distributions

We present dissolved organic carbon (DOC) concentrations, particulate organic matter (POM) composition (d13C, d15N, D14C, N/C), and particulate glycerol dialkyl glycerol tetraether (GDGT) distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model using d13C and N/C indicates that exported POM is consistently dominated by C3 rainforest soil sources, with increasing contribution from C3 vegetation and decreasing contribution from phytoplankton at high discharge. Large C4 inputs are never observed despite covering ~ 13% of the catchment. Low and variable D14C values during 2011 [annual mean = (-148 ± 82) per mil], when discharge from left-bank tributaries located in the southern hemisphere reached record lows, likely reflect a bias toward pre-aged POM derived from the Cuvette Congolaise swamp forest. In contrast, D14C values were stable near -50 per mil between January and June 2013, when left-bank discharge was highest. We suggest that headwater POM is replaced and/or diluted by C3 vegetation and pre-aged soils during transit through the Cuvette Congolaise, whereas left-bank tributaries export significantly less pre-aged material. GDGT distributions provide further evidence for seasonal and inter-annual variability in soil provenance. The cyclization of branched tetraethers and the GDGT-0 to crenarchaeol ratio are positively correlated with discharge (r >=0.70; p-value <= 4.3 × 10**-5) due to the incorporation of swamp-forest soils when discharge from right-bank tributaries located in the northern hemisphere is high. Both metrics reach record lows during 2013, supporting our interpretation of increased left-bank contribution at this time. We conclude that hydrologic variability is a major control of POM provenance in the Congo River Basin and that tropical wetlands can be a significant POM source despite their small geographic coverage.

Data and Resources

This dataset has no data

Cite this as

Hemingway, Jordon D, Schefuß, Enno, Spencer, Robert GM, Dinga, Bienvenu Jean, Eglinton, Timothy Ian, McIntyre, Cameron, Galy, Valier V (2017). Dataset: Congo River particulate and dissolved organic carbon concentrations, isotope compositions (δ¹³C, d15N, D14C), and particulate GDGT distributions. https://doi.org/10.1594/PANGAEA.883742

DOI retrieved: 2017

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.883742
Author Hemingway, Jordon D
Given Name Jordon D
Family Name Hemingway
More Authors
Schefuß, Enno
Spencer, Robert GM
Dinga, Bienvenu Jean
Eglinton, Timothy Ian
McIntyre, Cameron
Galy, Valier V
Source Creation 2017
Publication Year 2017
Resource Type application/zip - filename: Hemingway-etal_2017
Subject Areas
Name: Chemistry

Name: Lithosphere

Related Identifiers
Title: Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age
Identifier: https://doi.org/10.1016/j.chemgeo.2017.06.034
Type: DOI
Relation: IsSupplementTo
Year: 2017
Source: Chemical Geology
Authors: Hemingway Jordon D , Schefuß Enno , Spencer Robert GM , Dinga Bienvenu Jean , Eglinton Timothy Ian , McIntyre Cameron , Galy Valier V .

Title: Extras to: Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age
Identifier: https://store.pangaea.de/Publications/Hemingway-etal_2017/Extras.zip
Type: DOI
Relation: References
Authors: Hemingway Jordon D .