Sediment core data from The Archipelago Sea, northern Baltic Sea, Finland, 2015

The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented, and besides gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.

Data and Resources

This dataset has no data

Cite this as

Jokinen, Sami A, Virtasalo, Joonas J, Jilbert, Tom, Kaiser, Jérôme, Dellwig, Olaf, Arz, Helge Wolfgang, Hänninen, J, Arppe, Laura, Collander, Miia, Saarinen, Timo (2018). Dataset: Sediment core data from The Archipelago Sea, northern Baltic Sea, Finland, 2015. https://doi.org/10.1594/PANGAEA.891284

DOI retrieved: 2018

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.891284
Author Jokinen, Sami A
Given Name Sami A
Family Name Jokinen
More Authors
Virtasalo, Joonas J
Jilbert, Tom
Kaiser, Jérôme
Dellwig, Olaf
Arz, Helge Wolfgang
Hänninen, J
Arppe, Laura
Collander, Miia
Saarinen, Timo
Source Creation 2018
Publication Year 2018
Resource Type application/zip - filename: Jokinen-etal_2018
Subject Areas
Name: Ecology

Name: Lithosphere

Related Identifiers
Title: A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century
Identifier: https://doi.org/10.5194/bg-15-3975-2018
Type: DOI
Relation: IsSupplementTo
Year: 2018
Source: Biogeosciences
Authors: Jokinen Sami A , Virtasalo Joonas J , Jilbert Tom , Kaiser Jérôme , Dellwig Olaf , Arz Helge Wolfgang , Hänninen J , Arppe Laura , Collander Miia , Saarinen Timo .