We present geochemical data collected from volcanic ash-bearing sediments on the upper slope of the northern Hikurangi margin during the RV SONNE SO247 expedition in 2016. Gravity coring and seafloor drilling with the MARUM-MeBo200 allowed for collection of sediments down to 105 meters below seafloor (mbsf). Release of dissolved Sr2+ with isotopic composition enriched in 86Sr (87Sr/86Sr minimum = 0.708461 at 83.5 mbsf) is indicative of ash alteration. This reaction releases other cations in the 30-70 mbsf depth interval as reflected by maxima in pore-water Ca2+ and Ba2+ concentrations. In addition, we posit that Fe(III) in volcanogenic glass serves as an electron acceptor for methane oxidation, a reaction that releases Fe2+ measured in the pore fluids to a maximum concentration of 184 μM. Several lines of evidence support our proposed coupling of ash alteration with Fe-mediated anaerobic oxidation of methane (Fe-AOM) beneath the sulfate-methane transition (SMT), which lies at ∼7 mbsf at this site. In the ∼30-70 mbsf interval, we observe a concurrent increase in Fe2+ and a depletion of CH4 with a well-defined decrease in C-CH4 values indicative of microbial fractionation of carbon. The negative excursions in C values of both DIC and CH4 are similar to that observed by sulfate-driven AOM at low SO concentrations, and can only be explained by the microbially-mediated carbon isotope equilibration between CH4 and DIC. Mass balance considerations reveal that the iron cycled through the coupled ash alteration and AOM reactions is consumed as authigenic Fe-bearing minerals. This iron sink term derived from the mass balance is consistent with the amount of iron present as carbonate minerals, as estimated from sequential extraction analyses. Using a numerical modeling approach we estimate the rate of Fe-AOM to be on the order of 0.4 μmol cm−2 yr−1, which accounts for ∼12% of total CH4 removal in the sediments. Although not without uncertainties, the results presented reveal that Fe-AOM in ash-bearing sediments is significantly lower than the sulfate-driven CH4 consumption, which at this site is 3.0 μmol cm−2 yr−1. We highlight that Fe(III) in ash can potentially serve as an electron acceptor for methane oxidation in sulfate-depleted settings. This is relevant to our understanding of C-Fe cycling in the methanic zone that typically underlies the SMT and could be important in supporting the deep biosphere.
Cite this as
Luo, Min, Torres, Marta, Hong, Wei-Li, Pape, Thomas, Fronzek, Julia, Kutterolf, Steffen, Mountjoy, Joshu J, Orpin, Alan R, Henkel, Susann, Huhn, Katrin, Chen, Duofu, Kasten, Sabine (2020). Dataset: Methane concentrations and stable carbon isotopic composition of methane in headspace gas prepared from sediment cores at the Tuaheni slide complex east of New Zealand's North Island.
https://doi.org/10.1594/PANGAEA.914944
DOI retrieved: 2020