Seawater carbonate chemistry and UVR-induced inhibition of photosynthetic light reactions and growth in an intertidal red macroalga

The commercially important red macroalga Pyropia (formerly Porphyra) yezoensis is, in its natural intertidal environment, subjected to high levels of both photosynthetically active and ultraviolet radiation (PAR and UVR, respectively). In the present work, we investigated the effects of a plausibly increased global CO2 concentration on quantum yields of photosystems II (PSII) and I (PSI), as well as photosynthetic and growth rates of P. yezoensis grown under natural solar irradiance regimes with or without the presence of UV-A and/or UV-B. Our results showed that the high-CO2 treatment (1000 μbar, which also caused a drop of 0.3 pH units in the seawater) significantly increased both CO2 assimilation rates (by 35%) and growth (by 18%), as compared with ambient air of 400 μbar CO2. The inhibition of growth by UV-A (by 26%) was reduced to 15% by high-CO2 concentration, while the inhibition by UV-B remained at ~6% under both CO2 concentrations. Homologous results were also found for the maximal relative photosynthetic electron transport rates (rETRmax), the maximum quantum yield of PSII (Fv/Fm), as well as the midday decrease in effective quantum yield of PSII (YII) and concomitant increased non-photochemical quenching (NPQ). A two-way ANOVA analysis showed an interaction between CO2 concentration and irradiance quality, reflecting that UVR-induced inhibition of both growth and YII were alleviated under the high-CO2 treatment. Contrary to PSII, the effective quantum yield of PSI (YI) showed higher values under high-CO2 condition, and was not significantly affected by the presence of UVR, indicating that it was well protected from this radiation. Both the elevated CO2 concentration and presence of UVR significantly induced UV-absorbing compounds. These results suggest that future increasing CO2 conditions will be beneficial for photosynthesis and growth of P. yezoensis even if UVR should remain at high levels.

Data and Resources

This dataset has no data

Cite this as

Zhang, Di, Xu, Juntian, Bao, Menglin, Beer, Sven, Yan, Dong, Beardall, John, Gao, Kunshan (2020). Dataset: Seawater carbonate chemistry and UVR-induced inhibition of photosynthetic light reactions and growth in an intertidal red macroalga. https://doi.org/10.1594/PANGAEA.927308

DOI retrieved: 2020

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.927308
Author Zhang, Di
Given Name Di
Family Name Zhang
More Authors
Xu, Juntian
Bao, Menglin
Beer, Sven
Yan, Dong
Beardall, John
Gao, Kunshan
Source Creation 2020
Publication Year 2020
Resource Type text/tab-separated-values - filename: Zhang-etal_2021_JPPB
Subject Areas
Name: BiologicalClassification

Name: Chemistry

Related Identifiers
Title: Elevated CO2 concentration alleviates UVR-induced inhibition of photosynthetic light reactions and growth in an intertidal red macroalga
Identifier: https://doi.org/10.1016/j.jphotobiol.2020.112074
Type: DOI
Relation: References
Year: 2020
Source: Journal of Photochemistry and Photobiology B-Biology
Authors: Zhang Di , Xu Juntian , Bao Menglin , Beer Sven , Yan Dong , Beardall John , Gao Kunshan , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .

Title: seacarb: seawater carbonate chemistry with R. R package version 3.2.14
Identifier: https://CRAN.R-project.org/package=seacarb
Type: DOI
Relation: References
Year: 2020
Authors: Zhang Di , Xu Juntian , Bao Menglin , Beer Sven , Yan Dong , Beardall John , Gao Kunshan , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .