Benchmark dataset for 24-hour stratospheric ozone tendencies (SWIFT-AI-DS)

SWIFT-AI-DS is a benchmark dataset that consists of samples that have been derived from two simulation runs (each 2.5 years long) of the chemistry and transport model ATLAS (Wohltmann and Rex, 2009; Wohltmann et al., 2010). This data set of nearly 200 million samples meets the requirements of a labelled data set and is ideally suited for training and testing of a machine learning based surrogate model. Two time periods were considered in the simulation runs: first from November 1998 to March 2001 and the second from November 2004 to March 2007. The dataset covers the entire Earth geographically, but is vertically restricted to the altitudes of the lower to middle stratosphere, for which the SWIFT (Rex et al., 2014; Kreyling et. al, 2017; Wohltmann et al., 2017) approach of 24-hour ozone tendencies can be applied. Applicability was determined in terms of the chemical lifetime of stratospheric ozone, which is a function of solar irradiance and altitude. It can be described by a dynamic upper bound [Kreyling et. Al, 2017]. Within the range where the chemical lifetime is longer than 14 days, ozone is not in quasi-chemical equilibrium. Moreover, this data set focuses on the region of the lower to middle stratosphere because it is the region with the largest contribution to the total ozone column. State-of-the-art physical process models for stratospheric chemistry require enormous computational time. Our research is focused on developing much faster, yet accurate, surrogate models for computing the 24-hour tendencies of stratospheric ozone. Much faster models of stratospheric ozone provide a new application area such as for climate models. These surrogate models benefit greatly from the methodological and hardware improvements of the last decade. Each simulation run uses the full stratospheric chemistry model to solve a system of differential equations involving 47 chemical species and 171 chemical reactions at a very high (<< seconds) and variable temporal resolution. The ATLAS model is driven by ECMWF reanalysis data (either ERA-I or ERA5). The air parcel state has been sampled at a 24-hour time step (00:00 UTC model time). During postprocessing some variables are stored as 24-hour averages, as 24-hour tendencies or as the state at the beginning of the 24-hour time step. The dataset is stored in 12 monthly netCDF-files.

Data and Resources

This dataset has no data

Cite this as

Mohn, Helge, Kreyling, Daniel, Wohltmann, Ingo, Lehmann, Ralph, Rex, Markus (2021). Dataset: Benchmark dataset for 24-hour stratospheric ozone tendencies (SWIFT-AI-DS). https://doi.org/10.1594/PANGAEA.939121

DOI retrieved: 2021

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.939121
Author Mohn, Helge
Given Name Helge
Family Name Mohn
More Authors
Kreyling, Daniel
Wohltmann, Ingo
Lehmann, Ralph
Rex, Markus
Source Creation 2021
Publication Year 2021
Resource Type text/tab-separated-values - filename: Mohn-etal_2021
Subject Areas
Name: Lithosphere

Related Identifiers
Title: The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models
Identifier: https://doi.org/10.5194/gmd-11-753-2018
Type: DOI
Relation: References
Year: 2018
Source: Geoscientific Model Development
Authors: Kreyling Daniel , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Lehmann Ralph , Rex Markus , Kremser Stefanie , Huck P , Bodeker G E , Wohltmann Ingo , Santee M L , Bernath P , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Rex Markus .

Title: An Algorithm for the Determination of All Significant Pathways in Chemical Reaction Systems
Identifier: https://doi.org/10.1023/B:JOCH.0000012284.28801.b1
Type: DOI
Relation: References
Year: 2004
Source: Journal of Atmospheric Chemistry
Authors: Kreyling Daniel , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Lehmann Ralph , Rex Markus , Kremser Stefanie , Huck P , Bodeker G E , Wohltmann Ingo , Santee M L , Bernath P , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Rex Markus .

Title: Technical Note: SWIFT - a fast semi-empirical model for polar stratospheric ozone loss
Identifier: https://doi.org/10.5194/acp-14-6545-2014
Type: DOI
Relation: References
Year: 2014
Source: Atmospheric Chemistry and Physics
Authors: Kreyling Daniel , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Lehmann Ralph , Rex Markus , Kremser Stefanie , Huck P , Bodeker G E , Wohltmann Ingo , Santee M L , Bernath P , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Rex Markus .

Title: The Lagrangian chemistry and transport model ATLAS: simulation and validation of stratospheric chemistry and ozone loss in the winter 1999/2000
Identifier: https://doi.org/10.5194/gmd-3-585-2010
Type: DOI
Relation: References
Year: 2010
Source: Geoscientific Model Development
Authors: Kreyling Daniel , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Lehmann Ralph , Rex Markus , Kremser Stefanie , Huck P , Bodeker G E , Wohltmann Ingo , Santee M L , Bernath P , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Rex Markus .

Title: Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)
Identifier: https://doi.org/10.5194/gmd-10-2671-2017
Type: DOI
Relation: References
Year: 2017
Source: Geoscientific Model Development
Authors: Kreyling Daniel , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Lehmann Ralph , Rex Markus , Kremser Stefanie , Huck P , Bodeker G E , Wohltmann Ingo , Santee M L , Bernath P , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Rex Markus .

Title: The Lagrangian chemistry and transport model ATLAS: validation of advective transport and mixing
Identifier: https://doi.org/10.5194/gmd-2-153-2009
Type: DOI
Relation: References
Year: 2009
Source: Geoscientific Model Development
Authors: Kreyling Daniel , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Lehmann Ralph , Rex Markus , Kremser Stefanie , Huck P , Bodeker G E , Wohltmann Ingo , Santee M L , Bernath P , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Rex Markus .

Title: SWIFT-AI-DS: Description of Variables
Type: DOI
Relation: References
Authors: Kreyling Daniel , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Lehmann Ralph , Rex Markus , Kremser Stefanie , Huck P , Bodeker G E , Wohltmann Ingo , Santee M L , Bernath P , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Lehmann Ralph , Rex Markus , Wohltmann Ingo , Rex Markus .