Lignin concentrations and delta13C of organic matter in surface sediments from the Baltic Sea

The relative contribution and the composition of terrestrial organic matter were assessed by the analysis of phenolic lignin oxidation products and by the stable isotope composition of organic carbon in surface sediments of the Baltic Sea. For analyses, sub samples of lyophilized, ground and homogenized surface sediment (0-1 cm) material from the collection of surface sediments of the Institut fuer Ostseeforschung Warnemuende were used. Methods Lignin analysis: Between 500 to 2000 mg of dried and homogenised sediment were oxidized at 170°C for 2 h in the presence of 2 mol/L NaOH, CuO, and (NH)4Fe(SO4)2. After centrifugation, the supernatants were acidified to pH 2 with 6 mol/L HCl. The humic acids, which precipitated, were removed by centrifugation. The supernatant was further purified by solid phase extraction. The lignin-derived phenols were sorbed from the acidic solution on C18 material and later eluted with ethyl acetate. The solvent was removed by rotary evaporation, and the phenolic oxidation products were transferred to autosampler vials with methanol that was then removed under a flux of N2. Before analysis by GC/MS, the samples were dissolved in acetonitrile and derivatized with N,O-bis-(trimethylsilyl)trifluoroacetamid (BSTFA) for 1 h at room temperature. Thereafter, they were diluted with acetonitrile according to the expected phenol concentrations. One microliter of each sample was injected in splitless mode, and the phenols were separated in a HP 6890 gas chromatograph equipped with a HP5MS column (30 m x 250 micrometer x 0.25 micrometer). The temperature program of the gas chromatograph was 100°C isothermal for 4 min, ramp to 220°C at 4°C min^-1 with a 5-min isothermal period at 120°C, isothermal at 220°C for 3 min, ramp to 300°C at 30°C min^-1, and final isothermal period for 10 min. The transfer line to the mass spectrometer was kept at 325°C throughout the analysis. The HP 5973 mass spectrometer was operated in the EI mode at 70 eV. The ion source temperature was 230°C, and the quadrupole was kept at 150°C. Compounds were quantified by integration of the base ions and by comparison of the peak areas with those of synthetic standards. Before oxidation, ethylvanillin was added as an internal standard for the determination of recovery. To rule out possible transformations of the internal standard during the oxidation step, blanks containing only ethylvanillin and the reagents were also processed. GC-FID analysis of these blanks displayed a single peak with the retention time of ethylvanillin, and there was no evidence of any transformation of ethylvanillin during the oxidation step under the experimental conditions. The internal standard was added at the beginning of the analysis to ensure that the internal standard and the lignin oxidation products have the same history during the entire analysis. On average, 75% of the added ethylvanillin was recovered after the complete analytical procedure; the range of recoveries was from 50% to 105%. Concentrations and delta13C of total organic carbon Approximately 20 mg of the homogenized sample were weighed into tared sample vessels for elemental composition (total carbon, total nitrogen, organic carbon) and for isotope analyses (delta13C of organic carbon). Total carbon was determined in a Carlo Erba/Fisons 1108 Elemental Analyzer after combustion. A second weighed sample split in tared silver foil vessels was treated with 2N HCl to remove inorganic carbon. On this sub-sample, the concentrations of TOC and isotope ratio delta13C of organic carbon (given in permil versus V-PDB) were determined simultaneously in a Carlo Erba/Fisons 1108 Elemental Analyzer connected to an isotope-ratio mass spectrometer (Finnigan Delta S). The reference gas was pure CO2 from a cylinder calibrated against carbonate (NBS- 18, 19, 20). The standard deviation for replicate analyses of delta13C was less than 0.2 permil. The original data were corrected for the addition of anthropogenic CO2 (Suess effect) by substracting – 1.48 permil from the measured delta13C values of total organic carbon.

Data and Resources

This dataset has no data

Cite this as

Emeis, Kay-Christian, Miltner, Anja, Struck, Ulrich (2022). Dataset: Lignin concentrations and delta13C of organic matter in surface sediments from the Baltic Sea. https://doi.org/10.1594/PANGAEA.942683

DOI retrieved: 2022

Additional Info

Field Value
Imported on December 1, 2024
Last update December 1, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.942683
Author Emeis, Kay-Christian
Given Name Kay-Christian
Family Name Emeis
More Authors
Miltner, Anja
Struck, Ulrich
Source Creation 2022
Publication Year 2022
Resource Type text/tab-separated-values - filename: Surface_lignin_delta13C_TOC
Subject Areas
Name: Chemistry