Experiment on the response of the sea star Asterias rubens to heat stress and ocean acidification: experiment 1: respiration rates

Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused >95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.

Data and Resources

This dataset has no data

Cite this as

Melzner, Frank, Findeisen, Ulrike, Bock, Christian, Panknin, Ulrike, Kiko, Rainer, Hiebenthal, Claas, Lenz, Mark, Wall, Marlene (2022). Dataset: Experiment on the response of the sea star Asterias rubens to heat stress and ocean acidification: experiment 1: respiration rates. https://doi.org/10.1594/PANGAEA.949425

DOI retrieved: 2022

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.949425
Author Melzner, Frank
Given Name Frank
Family Name Melzner
More Authors
Findeisen, Ulrike
Bock, Christian
Panknin, Ulrike
Kiko, Rainer
Hiebenthal, Claas
Lenz, Mark
Wall, Marlene
Source Creation 2022
Publication Year 2022
Resource Type text/tab-separated-values - filename: Exp1_A-rubens_resp
Subject Areas
Name: BiologicalClassification