Seawater carbonate chemistry and physiological parameters of Caribbean coral

Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300–3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in P. strigosa and P. astreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies S. siderea and P. astreoides as potential 'winners' on future Caribbean coral reefs due to their resilience under projected global change stressors, while P. strigosa will likely be a 'loser' due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.

Data and Resources

This dataset has no data

Cite this as

Bove, Colleen B, Davies, Sarah W, Ries, Justin B, Umbanhowar, James, Thomasson, Bailey C, Farquhar, Elizabeth B, McCoppin, Jess A, Castillo, Karl D (2022). Dataset: Seawater carbonate chemistry and physiological parameters of Caribbean coral. https://doi.org/10.1594/PANGAEA.952656

DOI retrieved: 2022

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.952656
Author Bove, Colleen B
Given Name Colleen B
Family Name Bove
More Authors
Davies, Sarah W
Ries, Justin B
Umbanhowar, James
Thomasson, Bailey C
Farquhar, Elizabeth B
McCoppin, Jess A
Castillo, Karl D
Source Creation 2022
Publication Year 2022
Resource Type text/tab-separated-values - filename: Bove-etal_2022_Plos
Subject Areas
Name: BiologicalClassification

Name: Chemistry

Related Identifiers
Title: Global change differentially modulates Caribbean coral physiology
Identifier: https://doi.org/10.1371/journal.pone.0273897
Type: DOI
Relation: References
Year: 2022
Source: PLoS ONE
Authors: Bove Colleen B , Davies Sarah W , Ries Justin B , Umbanhowar James , Thomasson Bailey C , Farquhar Elizabeth B , McCoppin Jess A , Castillo Karl D , Bove Colleen B , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James .

Title: seabove7/Bove_CoralPhysiology: First release of code for coral physiology manuscript
Identifier: https://doi.org/10.5281/zenodo.5093907
Type: DOI
Relation: References
Year: 2021
Source: Zenodo
Authors: Bove Colleen B , Davies Sarah W , Ries Justin B , Umbanhowar James , Thomasson Bailey C , Farquhar Elizabeth B , McCoppin Jess A , Castillo Karl D , Bove Colleen B , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James .

Title: seacarb: seawater carbonate chemistry with R. R package version 3.2.16
Identifier: https://cran.r-project.org/web/packages/seacarb/index.html
Type: DOI
Relation: References
Year: 2021
Authors: Bove Colleen B , Davies Sarah W , Ries Justin B , Umbanhowar James , Thomasson Bailey C , Farquhar Elizabeth B , McCoppin Jess A , Castillo Karl D , Bove Colleen B , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James .