Abstract: High entropy oxides (HEOs) with chemically disordered multi-cation structure attract intensive interest as negative electrode materials for battery applications. The outstanding electrochemical performance is attributed to the high-entropy stabilization and so-called ‘cocktail effect’. However, the configurational entropy is insufficient to drive the structural reversibility of the room-temperature thermodynamically metastable HEO during conversion-type battery reaction, and the ‘cocktail effect’ has not been explained thus far. This work unveils the multi-cations synergy of the HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O at atomic and nanoscale during electrochemical reaction and explains the ‘cocktail effect’. The more electronegative elements form an electrochemically inert 3-dimensional metallic nano-network enabling electron transport. The electrochemical inactive cation stabilizes an oxide nanophase, which is semi-coherent with the metallic phase and accommodates Li+ ions. This self-assembled nanostructure enables stable cycling of micron-sized particles, which bypasses the need for nanoscale pre-modification required for conventional metal oxides in battery applications. This demonstrates elemental diversity is the key for optimizing multi-cation electrode materials.
TechnicalRemarks: Information about the data format and software suitable to open the data is available in the subdirectory 'description'
Cite this as
Wang, Kai, Hua, Weibo, Huang, Xiaohui, Stenzel, David, Wang, Junbo, Ding, Ziming, Cui, Yanyan, Wang, Qingsong, Ehrenberg, Helmut, Breitung, Ben, Kübel, Christian, Mu, Xiaoke (2023). Dataset: Synergy of cations in high entropy oxide lithium ion battery anode.
https://doi.org/10.35097/1415
DOI retrieved: 2023