Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder

Abstract: Nickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01 – 3.0 V and 0.4 – 3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g-1 at 0.05 A g-1 and good stability in the potential range of 0.01-3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g-1, a cycling retention of 42.2 % with a capacity of 697 mAh g-1 and at a high current density of 1.0 A g-1 shows a retention of 27.6 % with a capacity of 388 mAh g-1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6 % with a capacity of 182 mAh g-1 and 8.5 % with a capacity of 121 mAh g-1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cut-off potentials on the Li-ion storage mechanism. TechnicalRemarks: These data support the published paper.

Cite this as

Li, Xinyue (2023). Dataset: Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder. https://doi.org/10.35097/1500

DOI retrieved: 2023

Additional Info

Field Value
Imported on August 4, 2023
Last update August 4, 2023
License CC BY 4.0 Attribution
Source https://doi.org/10.35097/1500
Author Li, Xinyue
Source Creation 2023
Publishers
Karlsruhe Institute of Technology
Production Year 2021
Publication Year 2023
Subject Areas
Name: Engineering