Greenhouse gas mitigation potential of alternate wetting and drying for rrice production at national scale – a modelling case study for the philippines

Abstract: Worldwide, rice production contributes about 10% of total greenhouse gas (GHG) emissions from the agricultural sector, mainly due to CH4 emissions from continuously flooded (CF) fields. Alternate Wetting and Drying (AWD) is a promising crop technology for mitigating CH4 emissions and reducing the irrigation water currently being applied in many of the world's top rice-producing countries. However, decreased emissions of CH4 may be partially counterbalanced by increased N2O emissions. In this case study for the Philippines, the national mitigation potential of AWD is explored using the process-based biogeochemical model LandscapeDNDC. Simulated mean annual CH4 emissions under conventional rice production for the time period 2000 - 2011 are estimated as 1,180163 Gg CH4 yr-1. During the cropping season, this is about +16% higher than a former estimate using emission factors. Scenario simulations of nationwide introduction of AWD in irrigated landscapes suggest a considerable decrease of CH4 emissions by -23%, while N2O emissions are only increased by +8%. Irrespective of field management, at national scale the radiative forcing of irrigated rice production is always dominated by CH4 (>95%). The reduction potential of GHG emissions depends on, e.g., number of crops per year, residue management, amount of applied irrigation water and sand content. Seasonal weather conditions also play an important role, since the mitigation potential of AWD is almost double as high in dry as compared to wet seasons. Furthermore, this study demonstrates the importance of temporal continuity, considering off-season emissions and the long-term development of GHG emissions across multiple years.

Cite this as

Kraus, David, Werner, Christian, Janz, Baldur, Klatt, Steffen, Sander, Björn Ole, Wassmann, Reiner, Kiese, Ralf, Butterbach-Bahl, Klaus (2022). Dataset: Greenhouse gas mitigation potential of alternate wetting and drying for rrice production at national scale – a modelling case study for the philippines. https://doi.org/10.35097/588

DOI retrieved: 2022

Additional Info

Field Value
Imported on January 12, 2023
Last update August 4, 2023
License CC BY-ND 4.0 Attribution-NoDerivs
Source https://doi.org/10.35097/588
Author Kraus, David
More Authors
Werner, Christian
Janz, Baldur
Klatt, Steffen
Sander, Björn Ole
Wassmann, Reiner
Kiese, Ralf
Butterbach-Bahl, Klaus
Source Creation 2022
Publishers
Karlsruhe Institute of Technology (KIT)
Production Year 2022
Publication Year 2022
Subject Areas
Name: Geological Science

Name: Environmental Science and Ecology

Related Identifiers
Identifier: 10.1029/2022JG006848
Type: DOI
Relation: IsSupplementTo