Datasets for "uncovering developmental time and tempo using deep learning"

Abstract: This is the data repository for training and testing the Twin Network. The imaging data repositories are divided into several packages based on independent experiments. The data comprises bright-field time-lapse images of zebrafish embryos acquired in multiple batches within multi-well plates using an Acquifer Imaging Machine. Individual embryo segments were identified and extracted using a trained neural network for object detection. Within these experiment folders, data are organized by microscope position and embryo number.

Cite this as

Toulany, Nikan (2023). Dataset: Datasets for "uncovering developmental time and tempo using deep learning". https://doi.org/10.48606/50

DOI retrieved: 2023

Additional Info

Field Value
Imported on May 2, 2023
Last update August 4, 2023
License CC BY 4.0 Attribution
Source https://doi.org/10.48606/50
Author Toulany, Nikan
Source Creation 2023
Publishers
University of Konstanz
Production Year 2020-2023
Publication Year 2023
Resource Type Dataset - Overview of the Twin Network data packages.
Subject Areas
Name: Biology

Related Identifiers
Identifier: 10.48606/94
Type: DOI
Relation: HasPart

Identifier: 10.48606/58
Type: DOI
Relation: HasPart

Identifier: 10.48606/59
Type: DOI
Relation: HasPart

Identifier: 10.48606/61
Type: DOI
Relation: HasPart

Identifier: 10.48606/62
Type: DOI
Relation: HasPart

Identifier: 10.48606/63
Type: DOI
Relation: HasPart

Identifier: 10.48606/64
Type: DOI
Relation: HasPart

Identifier: 10.48606/65
Type: DOI
Relation: HasPart

Identifier: 10.48606/67
Type: DOI
Relation: HasPart

Identifier: 10.48606/68
Type: DOI
Relation: HasPart

Identifier: 10.48606/69
Type: DOI
Relation: HasPart

Identifier: 10.48606/70
Type: DOI
Relation: HasPart

Identifier: 10.48606/71
Type: DOI
Relation: HasPart

Identifier: 10.48606/72
Type: DOI
Relation: HasPart

Identifier: 10.48606/73
Type: DOI
Relation: HasPart

Identifier: 10.48606/74
Type: DOI
Relation: HasPart

Identifier: 10.48606/76
Type: DOI
Relation: HasPart

Identifier: 10.48606/75
Type: DOI
Relation: HasPart

Identifier: 10.48606/77
Type: DOI
Relation: HasPart

Identifier: 10.48606/78
Type: DOI
Relation: HasPart

Identifier: 10.48606/79
Type: DOI
Relation: HasPart

Identifier: 10.48606/80
Type: DOI
Relation: HasPart

Identifier: 10.48606/81
Type: DOI
Relation: HasPart

Identifier: 10.48606/82
Type: DOI
Relation: HasPart

Identifier: 10.48606/84
Type: DOI
Relation: HasPart

Identifier: 10.48606/83
Type: DOI
Relation: HasPart

Identifier: 10.48606/85
Type: DOI
Relation: HasPart

Identifier: 10.48606/86
Type: DOI
Relation: HasPart

Identifier: 10.48606/87
Type: DOI
Relation: HasPart

Identifier: 10.48606/88
Type: DOI
Relation: HasPart

Identifier: 10.48606/89
Type: DOI
Relation: HasPart

Identifier: 10.48606/90
Type: DOI
Relation: HasPart

Identifier: 10.48606/91
Type: DOI
Relation: HasPart

Identifier: 10.48606/92
Type: DOI
Relation: HasPart