Benchmarking Joint Face Spoofing and Forgery Detection with Visual and Physiological Cues

The paper proposes a unified face spoofing and forgery detection framework to solve the multi-dataset conflict problem, and the authors use five public autopilot datasets, including FaceForensics++ [14] Celeb-DF(V2) [15], WildDeepfake [16], DFDC [17] and the fake face dataset generated by diffusion DFF [18] to study the problem of data conflict in each domain or merged domains.

Data and Resources

Cite this as

Z. Yu, R. Cai, Z. Li, W. Yang, J. Shi, A. C. Kot (2024). Dataset: Benchmarking Joint Face Spoofing and Forgery Detection with Visual and Physiological Cues. https://doi.org/10.57702/joz3ou3d

DOI retrieved: December 2, 2024

Additional Info

Field Value
Created December 2, 2024
Last update December 2, 2024
Defined In https://doi.org/10.48550/arXiv.2406.20078
Author Z. Yu
More Authors
R. Cai
Z. Li
W. Yang
J. Shi
A. C. Kot