Haar Graph Pooling

Deep Graph Neural Networks (GNNs) are useful models for graph classification and graph-based regression tasks. In these tasks, graph pooling is a critical ingredient by which GNNs adapt to input graphs of varying size and structure. We propose a new graph pooling operation based on compressive Haar transforms — HaarPooling. HaarPooling implements a cascade of pooling operations; it is computed by following a sequence of clusterings of the input graph.

BibTex: