Dataset Groups Activity Stream Wasserstein Auto-Encoder (WAE) Wasserstein Auto-Encoder (WAE) is a generative model that uses a combination of convolutional and fully connected layers to learn a probabilistic representation of images. BibTex: @dataset{I_Tolstikhin_and_O_Bousquet_and_S_Gelly_and_B_Schölkopf_2024, abstract = {Wasserstein Auto-Encoder (WAE) is a generative model that uses a combination of convolutional and fully connected layers to learn a probabilistic representation of images.}, author = {I. Tolstikhin and O. Bousquet and S. Gelly and B. Schölkopf}, doi = {10.57702/bnl2q74l}, institution = {No Organization}, keyword = {'Generative Model', 'Image Generation', 'Wasserstein Auto-Encoder'}, month = {dec}, publisher = {TIB}, title = {Wasserstein Auto-Encoder (WAE)}, url = {https://service.tib.eu/ldmservice/dataset/wasserstein-auto-encoder--wae-}, year = {2024} }