Changes
On December 16, 2024 at 11:20:23 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Soft Actor-Critic -
Changed value of field
doi_date_published
to2024-12-16
in Soft Actor-Critic -
Added resource Original Metadata to Soft Actor-Critic
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Tuomas Haarnoja", | 3 | "author": "Tuomas Haarnoja", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2102.00714", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2102.00714", | ||
8 | "doi": "10.57702/rd6rjeug", | 8 | "doi": "10.57702/rd6rjeug", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Aurick Zhou", | 15 | "extra_author": "Aurick Zhou", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Pieter Abbeel", | 19 | "extra_author": "Pieter Abbeel", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Sergey Levine", | 23 | "extra_author": "Sergey Levine", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | } | 25 | } | ||
26 | ], | 26 | ], | ||
27 | "groups": [ | 27 | "groups": [ | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Off-policy Learning", | 30 | "display_name": "Off-policy Learning", | ||
31 | "id": "93d7865e-7b18-4c29-8ca5-b93bcc8df4bc", | 31 | "id": "93d7865e-7b18-4c29-8ca5-b93bcc8df4bc", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "off-policy-learning", | 33 | "name": "off-policy-learning", | ||
34 | "title": "Off-policy Learning" | 34 | "title": "Off-policy Learning" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "id": "a9c8a5b8-cbb3-4211-b680-0813c3eca421", | 37 | "id": "a9c8a5b8-cbb3-4211-b680-0813c3eca421", | ||
38 | "isopen": false, | 38 | "isopen": false, | ||
39 | "landing_page": "https://arxiv.org/abs/1707.06347", | 39 | "landing_page": "https://arxiv.org/abs/1707.06347", | ||
40 | "license_title": null, | 40 | "license_title": null, | ||
41 | "link_orkg": "", | 41 | "link_orkg": "", | ||
42 | "metadata_created": "2024-12-16T23:20:22.010542", | 42 | "metadata_created": "2024-12-16T23:20:22.010542", | ||
n | 43 | "metadata_modified": "2024-12-16T23:20:22.010547", | n | 43 | "metadata_modified": "2024-12-16T23:20:22.587990", |
44 | "name": "soft-actor-critic", | 44 | "name": "soft-actor-critic", | ||
45 | "notes": "A soft actor-critic algorithm for off-policy maximum | 45 | "notes": "A soft actor-critic algorithm for off-policy maximum | ||
46 | entropy deep reinforcement learning.", | 46 | entropy deep reinforcement learning.", | ||
n | 47 | "num_resources": 0, | n | 47 | "num_resources": 1, |
48 | "num_tags": 3, | 48 | "num_tags": 3, | ||
49 | "organization": { | 49 | "organization": { | ||
50 | "approval_status": "approved", | 50 | "approval_status": "approved", | ||
51 | "created": "2024-11-25T12:11:38.292601", | 51 | "created": "2024-11-25T12:11:38.292601", | ||
52 | "description": "", | 52 | "description": "", | ||
53 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 53 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
54 | "image_url": "", | 54 | "image_url": "", | ||
55 | "is_organization": true, | 55 | "is_organization": true, | ||
56 | "name": "no-organization", | 56 | "name": "no-organization", | ||
57 | "state": "active", | 57 | "state": "active", | ||
58 | "title": "No Organization", | 58 | "title": "No Organization", | ||
59 | "type": "organization" | 59 | "type": "organization" | ||
60 | }, | 60 | }, | ||
61 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 61 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
62 | "private": false, | 62 | "private": false, | ||
63 | "relationships_as_object": [], | 63 | "relationships_as_object": [], | ||
64 | "relationships_as_subject": [], | 64 | "relationships_as_subject": [], | ||
t | 65 | "resources": [], | t | 65 | "resources": [ |
66 | { | ||||
67 | "cache_last_updated": null, | ||||
68 | "cache_url": null, | ||||
69 | "created": "2024-12-16T23:37:10", | ||||
70 | "data": [ | ||||
71 | "dcterms:title", | ||||
72 | "dcterms:accessRights", | ||||
73 | "dcterms:creator", | ||||
74 | "dcterms:description", | ||||
75 | "dcterms:issued", | ||||
76 | "dcterms:language", | ||||
77 | "dcterms:identifier", | ||||
78 | "dcat:theme", | ||||
79 | "dcterms:type", | ||||
80 | "dcat:keyword", | ||||
81 | "dcat:landingPage", | ||||
82 | "dcterms:hasVersion", | ||||
83 | "dcterms:format", | ||||
84 | "mls:task", | ||||
85 | "datacite:isDescribedBy" | ||||
86 | ], | ||||
87 | "description": "The json representation of the dataset with its | ||||
88 | distributions based on DCAT.", | ||||
89 | "format": "JSON", | ||||
90 | "hash": "", | ||||
91 | "id": "4b6170f9-a80b-415f-b695-72b9c267fd6b", | ||||
92 | "last_modified": "2024-12-16T23:20:22.580049", | ||||
93 | "metadata_modified": "2024-12-16T23:20:22.590955", | ||||
94 | "mimetype": "application/json", | ||||
95 | "mimetype_inner": null, | ||||
96 | "name": "Original Metadata", | ||||
97 | "package_id": "a9c8a5b8-cbb3-4211-b680-0813c3eca421", | ||||
98 | "position": 0, | ||||
99 | "resource_type": null, | ||||
100 | "size": 805, | ||||
101 | "state": "active", | ||||
102 | "url": | ||||
103 | resource/4b6170f9-a80b-415f-b695-72b9c267fd6b/download/metadata.json", | ||||
104 | "url_type": "upload" | ||||
105 | } | ||||
106 | ], | ||||
66 | "services_used_list": "", | 107 | "services_used_list": "", | ||
67 | "state": "active", | 108 | "state": "active", | ||
68 | "tags": [ | 109 | "tags": [ | ||
69 | { | 110 | { | ||
70 | "display_name": "actor-critic", | 111 | "display_name": "actor-critic", | ||
71 | "id": "c7298aba-a845-4cc2-8eb4-5e7a1d7dd0b8", | 112 | "id": "c7298aba-a845-4cc2-8eb4-5e7a1d7dd0b8", | ||
72 | "name": "actor-critic", | 113 | "name": "actor-critic", | ||
73 | "state": "active", | 114 | "state": "active", | ||
74 | "vocabulary_id": null | 115 | "vocabulary_id": null | ||
75 | }, | 116 | }, | ||
76 | { | 117 | { | ||
77 | "display_name": "maximum entropy reinforcement learning", | 118 | "display_name": "maximum entropy reinforcement learning", | ||
78 | "id": "4a1a4efb-3190-4f7e-8710-8692cd1f12a3", | 119 | "id": "4a1a4efb-3190-4f7e-8710-8692cd1f12a3", | ||
79 | "name": "maximum entropy reinforcement learning", | 120 | "name": "maximum entropy reinforcement learning", | ||
80 | "state": "active", | 121 | "state": "active", | ||
81 | "vocabulary_id": null | 122 | "vocabulary_id": null | ||
82 | }, | 123 | }, | ||
83 | { | 124 | { | ||
84 | "display_name": "off-policy learning", | 125 | "display_name": "off-policy learning", | ||
85 | "id": "deff3f8b-64b5-4542-95ef-a3210f7d705e", | 126 | "id": "deff3f8b-64b5-4542-95ef-a3210f7d705e", | ||
86 | "name": "off-policy learning", | 127 | "name": "off-policy learning", | ||
87 | "state": "active", | 128 | "state": "active", | ||
88 | "vocabulary_id": null | 129 | "vocabulary_id": null | ||
89 | } | 130 | } | ||
90 | ], | 131 | ], | ||
91 | "title": "Soft Actor-Critic", | 132 | "title": "Soft Actor-Critic", | ||
92 | "type": "dataset", | 133 | "type": "dataset", | ||
93 | "version": "" | 134 | "version": "" | ||
94 | } | 135 | } |