Changes
On December 2, 2024 at 6:25:31 PM UTC, admin:
-
Changed value of field
doi_date_published
to2024-12-02
in Incorporating Reinforced Adversarial Learning in Autoregressive Image Generation -
Changed value of field
doi_status
toTrue
in Incorporating Reinforced Adversarial Learning in Autoregressive Image Generation -
Added resource Original Metadata to Incorporating Reinforced Adversarial Learning in Autoregressive Image Generation
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Kenan E. Ak1", | 3 | "author": "Kenan E. Ak1", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2007.09923", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2007.09923", | ||
8 | "doi": "10.57702/7vvjcf89", | 8 | "doi": "10.57702/7vvjcf89", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Ning Xu2", | 15 | "extra_author": "Ning Xu2", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Zhe Lin2", | 19 | "extra_author": "Zhe Lin2", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Yilin Wang2", | 23 | "extra_author": "Yilin Wang2", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | } | 25 | } | ||
26 | ], | 26 | ], | ||
27 | "groups": [ | 27 | "groups": [ | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Image Generation", | 30 | "display_name": "Image Generation", | ||
31 | "id": "be25a76c-def1-4e73-8b1c-b81222d63867", | 31 | "id": "be25a76c-def1-4e73-8b1c-b81222d63867", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "image-generation", | 33 | "name": "image-generation", | ||
34 | "title": "Image Generation" | 34 | "title": "Image Generation" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "id": "e6cb88ad-1639-4058-9ded-0f77390c516b", | 37 | "id": "e6cb88ad-1639-4058-9ded-0f77390c516b", | ||
38 | "isopen": false, | 38 | "isopen": false, | ||
39 | "landing_page": "", | 39 | "landing_page": "", | ||
40 | "license_title": null, | 40 | "license_title": null, | ||
41 | "link_orkg": "", | 41 | "link_orkg": "", | ||
42 | "metadata_created": "2024-12-02T18:25:30.032566", | 42 | "metadata_created": "2024-12-02T18:25:30.032566", | ||
n | 43 | "metadata_modified": "2024-12-02T18:25:30.032571", | n | 43 | "metadata_modified": "2024-12-02T18:25:30.361701", |
44 | "name": | 44 | "name": | ||
45 | g-reinforced-adversarial-learning-in-autoregressive-image-generation", | 45 | g-reinforced-adversarial-learning-in-autoregressive-image-generation", | ||
46 | "notes": "Autoregressive models recently achieved comparable results | 46 | "notes": "Autoregressive models recently achieved comparable results | ||
47 | versus state-of-the-art Generative Adversarial Networks (GANs) with | 47 | versus state-of-the-art Generative Adversarial Networks (GANs) with | ||
48 | the help of Vector Quantized Variational AutoEncoders (VQ-VAE). | 48 | the help of Vector Quantized Variational AutoEncoders (VQ-VAE). | ||
49 | However, autoregressive models have several limitations such as | 49 | However, autoregressive models have several limitations such as | ||
50 | exposure bias and their training objective does not guarantee visual | 50 | exposure bias and their training objective does not guarantee visual | ||
51 | fidelity. To address these limitations, we propose to use Reinforced | 51 | fidelity. To address these limitations, we propose to use Reinforced | ||
52 | Adversarial Learning (RAL) based on policy gradient optimization for | 52 | Adversarial Learning (RAL) based on policy gradient optimization for | ||
53 | autoregressive models.", | 53 | autoregressive models.", | ||
n | 54 | "num_resources": 0, | n | 54 | "num_resources": 1, |
55 | "num_tags": 4, | 55 | "num_tags": 4, | ||
56 | "organization": { | 56 | "organization": { | ||
57 | "approval_status": "approved", | 57 | "approval_status": "approved", | ||
58 | "created": "2024-11-25T12:11:38.292601", | 58 | "created": "2024-11-25T12:11:38.292601", | ||
59 | "description": "", | 59 | "description": "", | ||
60 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 60 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
61 | "image_url": "", | 61 | "image_url": "", | ||
62 | "is_organization": true, | 62 | "is_organization": true, | ||
63 | "name": "no-organization", | 63 | "name": "no-organization", | ||
64 | "state": "active", | 64 | "state": "active", | ||
65 | "title": "No Organization", | 65 | "title": "No Organization", | ||
66 | "type": "organization" | 66 | "type": "organization" | ||
67 | }, | 67 | }, | ||
68 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 68 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
69 | "private": false, | 69 | "private": false, | ||
70 | "relationships_as_object": [], | 70 | "relationships_as_object": [], | ||
71 | "relationships_as_subject": [], | 71 | "relationships_as_subject": [], | ||
t | 72 | "resources": [], | t | 72 | "resources": [ |
73 | { | ||||
74 | "cache_last_updated": null, | ||||
75 | "cache_url": null, | ||||
76 | "created": "2024-12-02T18:38:42", | ||||
77 | "data": [ | ||||
78 | "dcterms:title", | ||||
79 | "dcterms:accessRights", | ||||
80 | "dcterms:creator", | ||||
81 | "dcterms:description", | ||||
82 | "dcterms:issued", | ||||
83 | "dcterms:language", | ||||
84 | "dcterms:identifier", | ||||
85 | "dcat:theme", | ||||
86 | "dcterms:type", | ||||
87 | "dcat:keyword", | ||||
88 | "dcat:landingPage", | ||||
89 | "dcterms:hasVersion", | ||||
90 | "dcterms:format", | ||||
91 | "mls:task", | ||||
92 | "datacite:isDescribedBy" | ||||
93 | ], | ||||
94 | "description": "The json representation of the dataset with its | ||||
95 | distributions based on DCAT.", | ||||
96 | "format": "JSON", | ||||
97 | "hash": "", | ||||
98 | "id": "5edf5a7e-be99-4640-9f42-32aca9af2898", | ||||
99 | "last_modified": "2024-12-02T18:25:30.354512", | ||||
100 | "metadata_modified": "2024-12-02T18:25:30.364475", | ||||
101 | "mimetype": "application/json", | ||||
102 | "mimetype_inner": null, | ||||
103 | "name": "Original Metadata", | ||||
104 | "package_id": "e6cb88ad-1639-4058-9ded-0f77390c516b", | ||||
105 | "position": 0, | ||||
106 | "resource_type": null, | ||||
107 | "size": 1190, | ||||
108 | "state": "active", | ||||
109 | "url": | ||||
110 | resource/5edf5a7e-be99-4640-9f42-32aca9af2898/download/metadata.json", | ||||
111 | "url_type": "upload" | ||||
112 | } | ||||
113 | ], | ||||
73 | "services_used_list": "", | 114 | "services_used_list": "", | ||
74 | "state": "active", | 115 | "state": "active", | ||
75 | "tags": [ | 116 | "tags": [ | ||
76 | { | 117 | { | ||
77 | "display_name": "Autoregressive Models", | 118 | "display_name": "Autoregressive Models", | ||
78 | "id": "4a5be82a-0218-494e-ae64-f6cc34388e71", | 119 | "id": "4a5be82a-0218-494e-ae64-f6cc34388e71", | ||
79 | "name": "Autoregressive Models", | 120 | "name": "Autoregressive Models", | ||
80 | "state": "active", | 121 | "state": "active", | ||
81 | "vocabulary_id": null | 122 | "vocabulary_id": null | ||
82 | }, | 123 | }, | ||
83 | { | 124 | { | ||
84 | "display_name": "Generative Adversarial Networks", | 125 | "display_name": "Generative Adversarial Networks", | ||
85 | "id": "b384af43-f86b-489d-a8d4-9595f25d6e95", | 126 | "id": "b384af43-f86b-489d-a8d4-9595f25d6e95", | ||
86 | "name": "Generative Adversarial Networks", | 127 | "name": "Generative Adversarial Networks", | ||
87 | "state": "active", | 128 | "state": "active", | ||
88 | "vocabulary_id": null | 129 | "vocabulary_id": null | ||
89 | }, | 130 | }, | ||
90 | { | 131 | { | ||
91 | "display_name": "Reinforced Adversarial Learning", | 132 | "display_name": "Reinforced Adversarial Learning", | ||
92 | "id": "cbb575d5-9126-4e15-a98f-53f1be7d0274", | 133 | "id": "cbb575d5-9126-4e15-a98f-53f1be7d0274", | ||
93 | "name": "Reinforced Adversarial Learning", | 134 | "name": "Reinforced Adversarial Learning", | ||
94 | "state": "active", | 135 | "state": "active", | ||
95 | "vocabulary_id": null | 136 | "vocabulary_id": null | ||
96 | }, | 137 | }, | ||
97 | { | 138 | { | ||
98 | "display_name": "Vector Quantized Variational AutoEncoders", | 139 | "display_name": "Vector Quantized Variational AutoEncoders", | ||
99 | "id": "0b3611ec-a8bc-48cb-b02c-2d75741383f5", | 140 | "id": "0b3611ec-a8bc-48cb-b02c-2d75741383f5", | ||
100 | "name": "Vector Quantized Variational AutoEncoders", | 141 | "name": "Vector Quantized Variational AutoEncoders", | ||
101 | "state": "active", | 142 | "state": "active", | ||
102 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
103 | } | 144 | } | ||
104 | ], | 145 | ], | ||
105 | "title": "Incorporating Reinforced Adversarial Learning in | 146 | "title": "Incorporating Reinforced Adversarial Learning in | ||
106 | Autoregressive Image Generation", | 147 | Autoregressive Image Generation", | ||
107 | "type": "dataset", | 148 | "type": "dataset", | ||
108 | "version": "" | 149 | "version": "" | ||
109 | } | 150 | } |