Changes
On December 3, 2024 at 10:34:55 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Exploiting Asymmetry for Synthetic Training -
Changed value of field
doi_date_published
to2024-12-03
in Exploiting Asymmetry for Synthetic Training -
Added resource Original Metadata to Exploiting Asymmetry for Synthetic Training
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Martin Josifoski", | 3 | "author": "Martin Josifoski", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2405.20806", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2405.20806", | ||
8 | "doi": "10.57702/ud07m40z", | 8 | "doi": "10.57702/ud07m40z", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Marija \u0160akota", | 15 | "extra_author": "Marija \u0160akota", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Maxime Peyrard", | 19 | "extra_author": "Maxime Peyrard", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Robert West", | 23 | "extra_author": "Robert West", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | } | 25 | } | ||
26 | ], | 26 | ], | ||
27 | "groups": [ | 27 | "groups": [ | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Information Extraction", | 30 | "display_name": "Information Extraction", | ||
31 | "id": "93de4fe8-1876-4c12-8d59-9ad10de2fbaf", | 31 | "id": "93de4fe8-1876-4c12-8d59-9ad10de2fbaf", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "information-extraction", | 33 | "name": "information-extraction", | ||
34 | "title": "Information Extraction" | 34 | "title": "Information Extraction" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Synthetic Training", | 38 | "display_name": "Synthetic Training", | ||
39 | "id": "acb9062e-bc95-4862-bc41-ad948bf697a8", | 39 | "id": "acb9062e-bc95-4862-bc41-ad948bf697a8", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "synthetic-training", | 41 | "name": "synthetic-training", | ||
42 | "title": "Synthetic Training" | 42 | "title": "Synthetic Training" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "id": "d47cec06-fa90-4fb0-88f9-1815473267b2", | 45 | "id": "d47cec06-fa90-4fb0-88f9-1815473267b2", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "landing_page": "https://arxiv.org/abs/2023.12345", | 47 | "landing_page": "https://arxiv.org/abs/2023.12345", | ||
48 | "license_title": null, | 48 | "license_title": null, | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "metadata_created": "2024-12-03T10:34:53.204364", | 50 | "metadata_created": "2024-12-03T10:34:53.204364", | ||
n | 51 | "metadata_modified": "2024-12-03T10:34:53.204369", | n | 51 | "metadata_modified": "2024-12-03T10:34:53.693073", |
52 | "name": "exploiting-asymmetry-for-synthetic-training", | 52 | "name": "exploiting-asymmetry-for-synthetic-training", | ||
53 | "notes": "The Exploiting Asymmetry for Synthetic Training in | 53 | "notes": "The Exploiting Asymmetry for Synthetic Training in | ||
54 | Proceedings of the 2023 Conference on data generation: SynthIE and the | 54 | Proceedings of the 2023 Conference on data generation: SynthIE and the | ||
55 | case of information extraction dataset is used to demonstrate the | 55 | case of information extraction dataset is used to demonstrate the | ||
56 | effectiveness of exploiting asymmetry for synthetic training.", | 56 | effectiveness of exploiting asymmetry for synthetic training.", | ||
n | 57 | "num_resources": 0, | n | 57 | "num_resources": 1, |
58 | "num_tags": 3, | 58 | "num_tags": 3, | ||
59 | "organization": { | 59 | "organization": { | ||
60 | "approval_status": "approved", | 60 | "approval_status": "approved", | ||
61 | "created": "2024-11-25T12:11:38.292601", | 61 | "created": "2024-11-25T12:11:38.292601", | ||
62 | "description": "", | 62 | "description": "", | ||
63 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 63 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
64 | "image_url": "", | 64 | "image_url": "", | ||
65 | "is_organization": true, | 65 | "is_organization": true, | ||
66 | "name": "no-organization", | 66 | "name": "no-organization", | ||
67 | "state": "active", | 67 | "state": "active", | ||
68 | "title": "No Organization", | 68 | "title": "No Organization", | ||
69 | "type": "organization" | 69 | "type": "organization" | ||
70 | }, | 70 | }, | ||
71 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 71 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
72 | "private": false, | 72 | "private": false, | ||
73 | "relationships_as_object": [], | 73 | "relationships_as_object": [], | ||
74 | "relationships_as_subject": [], | 74 | "relationships_as_subject": [], | ||
t | 75 | "resources": [], | t | 75 | "resources": [ |
76 | { | ||||
77 | "cache_last_updated": null, | ||||
78 | "cache_url": null, | ||||
79 | "created": "2024-12-03T11:31:03", | ||||
80 | "data": [ | ||||
81 | "dcterms:title", | ||||
82 | "dcterms:accessRights", | ||||
83 | "dcterms:creator", | ||||
84 | "dcterms:description", | ||||
85 | "dcterms:issued", | ||||
86 | "dcterms:language", | ||||
87 | "dcterms:identifier", | ||||
88 | "dcat:theme", | ||||
89 | "dcterms:type", | ||||
90 | "dcat:keyword", | ||||
91 | "dcat:landingPage", | ||||
92 | "dcterms:hasVersion", | ||||
93 | "dcterms:format", | ||||
94 | "mls:task", | ||||
95 | "datacite:isDescribedBy" | ||||
96 | ], | ||||
97 | "description": "The json representation of the dataset with its | ||||
98 | distributions based on DCAT.", | ||||
99 | "format": "JSON", | ||||
100 | "hash": "", | ||||
101 | "id": "74ca7342-4ed7-4d6b-8789-ef2a20b9f49a", | ||||
102 | "last_modified": "2024-12-03T10:34:53.685105", | ||||
103 | "metadata_modified": "2024-12-03T10:34:53.696129", | ||||
104 | "mimetype": "application/json", | ||||
105 | "mimetype_inner": null, | ||||
106 | "name": "Original Metadata", | ||||
107 | "package_id": "d47cec06-fa90-4fb0-88f9-1815473267b2", | ||||
108 | "position": 0, | ||||
109 | "resource_type": null, | ||||
110 | "size": 946, | ||||
111 | "state": "active", | ||||
112 | "url": | ||||
113 | resource/74ca7342-4ed7-4d6b-8789-ef2a20b9f49a/download/metadata.json", | ||||
114 | "url_type": "upload" | ||||
115 | } | ||||
116 | ], | ||||
76 | "services_used_list": "", | 117 | "services_used_list": "", | ||
77 | "state": "active", | 118 | "state": "active", | ||
78 | "tags": [ | 119 | "tags": [ | ||
79 | { | 120 | { | ||
80 | "display_name": "asymmetry", | 121 | "display_name": "asymmetry", | ||
81 | "id": "55cc4257-ccc0-4f97-ae46-8f517c48448c", | 122 | "id": "55cc4257-ccc0-4f97-ae46-8f517c48448c", | ||
82 | "name": "asymmetry", | 123 | "name": "asymmetry", | ||
83 | "state": "active", | 124 | "state": "active", | ||
84 | "vocabulary_id": null | 125 | "vocabulary_id": null | ||
85 | }, | 126 | }, | ||
86 | { | 127 | { | ||
87 | "display_name": "information extraction", | 128 | "display_name": "information extraction", | ||
88 | "id": "b2f12da9-1f82-400d-ac33-fc84bc4219fa", | 129 | "id": "b2f12da9-1f82-400d-ac33-fc84bc4219fa", | ||
89 | "name": "information extraction", | 130 | "name": "information extraction", | ||
90 | "state": "active", | 131 | "state": "active", | ||
91 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
92 | }, | 133 | }, | ||
93 | { | 134 | { | ||
94 | "display_name": "synthetic training", | 135 | "display_name": "synthetic training", | ||
95 | "id": "bd1bae73-8ec7-433d-819a-f3f62c7e6c06", | 136 | "id": "bd1bae73-8ec7-433d-819a-f3f62c7e6c06", | ||
96 | "name": "synthetic training", | 137 | "name": "synthetic training", | ||
97 | "state": "active", | 138 | "state": "active", | ||
98 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
99 | } | 140 | } | ||
100 | ], | 141 | ], | ||
101 | "title": "Exploiting Asymmetry for Synthetic Training", | 142 | "title": "Exploiting Asymmetry for Synthetic Training", | ||
102 | "type": "dataset", | 143 | "type": "dataset", | ||
103 | "version": "" | 144 | "version": "" | ||
104 | } | 145 | } |