Changes
On January 3, 2025 at 1:04:33 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Adversarial Data Programming: Using GANs to Relax the Bottleneck of Curated Labeled Data -
Changed value of field
doi_date_published
to2025-01-03
in Adversarial Data Programming: Using GANs to Relax the Bottleneck of Curated Labeled Data -
Added resource Original Metadata to Adversarial Data Programming: Using GANs to Relax the Bottleneck of Curated Labeled Data
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Arghya Pal", | 3 | "author": "Arghya Pal", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.1803.05137", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.1803.05137", | ||
8 | "doi": "10.57702/35l4234u", | 8 | "doi": "10.57702/35l4234u", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2025-01-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Vineeth N Balasubramanian", | 15 | "extra_author": "Vineeth N Balasubramanian", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Computer Vision", | 22 | "display_name": "Computer Vision", | ||
23 | "id": "d09caf7c-26c7-4e4d-bb8e-49476a90ba25", | 23 | "id": "d09caf7c-26c7-4e4d-bb8e-49476a90ba25", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "computer-vision", | 25 | "name": "computer-vision", | ||
26 | "title": "Computer Vision" | 26 | "title": "Computer Vision" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Machine Learning", | 30 | "display_name": "Machine Learning", | ||
31 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | 31 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "machine-learning", | 33 | "name": "machine-learning", | ||
34 | "title": "Machine Learning" | 34 | "title": "Machine Learning" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "id": "1f07eb9f-2b45-4f89-88ba-cf91fbcfcf08", | 37 | "id": "1f07eb9f-2b45-4f89-88ba-cf91fbcfcf08", | ||
38 | "isopen": false, | 38 | "isopen": false, | ||
39 | "landing_page": "https://arxiv.org/abs/1806.09568", | 39 | "landing_page": "https://arxiv.org/abs/1806.09568", | ||
40 | "license_title": null, | 40 | "license_title": null, | ||
41 | "link_orkg": "", | 41 | "link_orkg": "", | ||
42 | "metadata_created": "2025-01-03T01:04:32.059180", | 42 | "metadata_created": "2025-01-03T01:04:32.059180", | ||
n | 43 | "metadata_modified": "2025-01-03T01:04:32.059187", | n | 43 | "metadata_modified": "2025-01-03T01:04:32.629742", |
44 | "name": | 44 | "name": | ||
45 | gramming--using-gans-to-relax-the-bottleneck-of-curated-labeled-data", | 45 | gramming--using-gans-to-relax-the-bottleneck-of-curated-labeled-data", | ||
46 | "notes": "Paucity of large curated hand-labeled training data for | 46 | "notes": "Paucity of large curated hand-labeled training data for | ||
47 | every domain-of-interest forms a major bottleneck in the deployment of | 47 | every domain-of-interest forms a major bottleneck in the deployment of | ||
48 | machine learning models in computer vision and other fields.", | 48 | machine learning models in computer vision and other fields.", | ||
n | 49 | "num_resources": 0, | n | 49 | "num_resources": 1, |
50 | "num_tags": 4, | 50 | "num_tags": 4, | ||
51 | "organization": { | 51 | "organization": { | ||
52 | "approval_status": "approved", | 52 | "approval_status": "approved", | ||
53 | "created": "2024-11-25T12:11:38.292601", | 53 | "created": "2024-11-25T12:11:38.292601", | ||
54 | "description": "", | 54 | "description": "", | ||
55 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 55 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
56 | "image_url": "", | 56 | "image_url": "", | ||
57 | "is_organization": true, | 57 | "is_organization": true, | ||
58 | "name": "no-organization", | 58 | "name": "no-organization", | ||
59 | "state": "active", | 59 | "state": "active", | ||
60 | "title": "No Organization", | 60 | "title": "No Organization", | ||
61 | "type": "organization" | 61 | "type": "organization" | ||
62 | }, | 62 | }, | ||
63 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 63 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
64 | "private": false, | 64 | "private": false, | ||
65 | "relationships_as_object": [], | 65 | "relationships_as_object": [], | ||
66 | "relationships_as_subject": [], | 66 | "relationships_as_subject": [], | ||
t | 67 | "resources": [], | t | 67 | "resources": [ |
68 | { | ||||
69 | "cache_last_updated": null, | ||||
70 | "cache_url": null, | ||||
71 | "created": "2025-01-03T00:16:35", | ||||
72 | "data": [ | ||||
73 | "dcterms:title", | ||||
74 | "dcterms:accessRights", | ||||
75 | "dcterms:creator", | ||||
76 | "dcterms:description", | ||||
77 | "dcterms:issued", | ||||
78 | "dcterms:language", | ||||
79 | "dcterms:identifier", | ||||
80 | "dcat:theme", | ||||
81 | "dcterms:type", | ||||
82 | "dcat:keyword", | ||||
83 | "dcat:landingPage", | ||||
84 | "dcterms:hasVersion", | ||||
85 | "dcterms:format", | ||||
86 | "mls:task", | ||||
87 | "datacite:isDescribedBy" | ||||
88 | ], | ||||
89 | "description": "The json representation of the dataset with its | ||||
90 | distributions based on DCAT.", | ||||
91 | "format": "JSON", | ||||
92 | "hash": "", | ||||
93 | "id": "c633cea3-e753-4351-8919-72664ed5ca91", | ||||
94 | "last_modified": "2025-01-03T01:04:32.621825", | ||||
95 | "metadata_modified": "2025-01-03T01:04:32.632721", | ||||
96 | "mimetype": "application/json", | ||||
97 | "mimetype_inner": null, | ||||
98 | "name": "Original Metadata", | ||||
99 | "package_id": "1f07eb9f-2b45-4f89-88ba-cf91fbcfcf08", | ||||
100 | "position": 0, | ||||
101 | "resource_type": null, | ||||
102 | "size": 890, | ||||
103 | "state": "active", | ||||
104 | "url": | ||||
105 | resource/c633cea3-e753-4351-8919-72664ed5ca91/download/metadata.json", | ||||
106 | "url_type": "upload" | ||||
107 | } | ||||
108 | ], | ||||
68 | "services_used_list": "", | 109 | "services_used_list": "", | ||
69 | "state": "active", | 110 | "state": "active", | ||
70 | "tags": [ | 111 | "tags": [ | ||
71 | { | 112 | { | ||
72 | "display_name": "Computer Vision", | 113 | "display_name": "Computer Vision", | ||
73 | "id": "77b96eda-8a43-406f-9c54-d87b14f3f63e", | 114 | "id": "77b96eda-8a43-406f-9c54-d87b14f3f63e", | ||
74 | "name": "Computer Vision", | 115 | "name": "Computer Vision", | ||
75 | "state": "active", | 116 | "state": "active", | ||
76 | "vocabulary_id": null | 117 | "vocabulary_id": null | ||
77 | }, | 118 | }, | ||
78 | { | 119 | { | ||
79 | "display_name": "Curated Labeled Data", | 120 | "display_name": "Curated Labeled Data", | ||
80 | "id": "be2c7d4e-2ab5-4768-b57a-37de28ac0158", | 121 | "id": "be2c7d4e-2ab5-4768-b57a-37de28ac0158", | ||
81 | "name": "Curated Labeled Data", | 122 | "name": "Curated Labeled Data", | ||
82 | "state": "active", | 123 | "state": "active", | ||
83 | "vocabulary_id": null | 124 | "vocabulary_id": null | ||
84 | }, | 125 | }, | ||
85 | { | 126 | { | ||
86 | "display_name": "GANs", | 127 | "display_name": "GANs", | ||
87 | "id": "ba92b867-41e4-435d-b0d6-285954f842d8", | 128 | "id": "ba92b867-41e4-435d-b0d6-285954f842d8", | ||
88 | "name": "GANs", | 129 | "name": "GANs", | ||
89 | "state": "active", | 130 | "state": "active", | ||
90 | "vocabulary_id": null | 131 | "vocabulary_id": null | ||
91 | }, | 132 | }, | ||
92 | { | 133 | { | ||
93 | "display_name": "Machine Learning", | 134 | "display_name": "Machine Learning", | ||
94 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | 135 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | ||
95 | "name": "Machine Learning", | 136 | "name": "Machine Learning", | ||
96 | "state": "active", | 137 | "state": "active", | ||
97 | "vocabulary_id": null | 138 | "vocabulary_id": null | ||
98 | } | 139 | } | ||
99 | ], | 140 | ], | ||
100 | "title": "Adversarial Data Programming: Using GANs to Relax the | 141 | "title": "Adversarial Data Programming: Using GANs to Relax the | ||
101 | Bottleneck of Curated Labeled Data", | 142 | Bottleneck of Curated Labeled Data", | ||
102 | "type": "dataset", | 143 | "type": "dataset", | ||
103 | "version": "" | 144 | "version": "" | ||
104 | } | 145 | } |