Changes
On January 3, 2025 at 12:36:13 AM UTC, admin:
-
Changed value of field
doi_date_published
to2025-01-03
in DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a Variational Graph Autoencoder -
Changed value of field
doi_status
toTrue
in DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a Variational Graph Autoencoder -
Added resource Original Metadata to DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a Variational Graph Autoencoder
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Ao Zhang", | 3 | "author": "Ao Zhang", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2006.08900", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2006.08900", | ||
8 | "doi": "10.57702/lucrc0b4", | 8 | "doi": "10.57702/lucrc0b4", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2025-01-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Jinwen Ma", | 15 | "extra_author": "Jinwen Ma", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Adversarial Attacks", | 22 | "display_name": "Adversarial Attacks", | ||
23 | "id": "e84bd963-dcc0-442c-8412-151c593a929f", | 23 | "id": "e84bd963-dcc0-442c-8412-151c593a929f", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "adversarial-attacks", | 25 | "name": "adversarial-attacks", | ||
26 | "title": "Adversarial Attacks" | 26 | "title": "Adversarial Attacks" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Defense", | 30 | "display_name": "Defense", | ||
31 | "id": "cfb0bbe2-2b77-4e86-8f07-ad14d8b0f6e5", | 31 | "id": "cfb0bbe2-2b77-4e86-8f07-ad14d8b0f6e5", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "defense", | 33 | "name": "defense", | ||
34 | "title": "Defense" | 34 | "title": "Defense" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Graph Neural Networks", | 38 | "display_name": "Graph Neural Networks", | ||
39 | "id": "eebd8b57-9537-49ea-a9af-acefc8889bb4", | 39 | "id": "eebd8b57-9537-49ea-a9af-acefc8889bb4", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "graph-neural-networks", | 41 | "name": "graph-neural-networks", | ||
42 | "title": "Graph Neural Networks" | 42 | "title": "Graph Neural Networks" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "id": "7a15ec05-d546-41d6-a64e-f96bd8adf5c3", | 45 | "id": "7a15ec05-d546-41d6-a64e-f96bd8adf5c3", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "landing_page": "https://github.com/zhangao520/defense-vgae", | 47 | "landing_page": "https://github.com/zhangao520/defense-vgae", | ||
48 | "license_title": null, | 48 | "license_title": null, | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "metadata_created": "2025-01-03T00:36:11.788582", | 50 | "metadata_created": "2025-01-03T00:36:11.788582", | ||
n | 51 | "metadata_modified": "2025-01-03T00:36:11.788588", | n | 51 | "metadata_modified": "2025-01-03T00:36:12.427917", |
52 | "name": | 52 | "name": | ||
53 | dversarial-attacks-on-graph-data-via-a-variational-graph-autoencoder", | 53 | dversarial-attacks-on-graph-data-via-a-variational-graph-autoencoder", | ||
54 | "notes": "Graph neural networks (GNNs) achieve remarkable | 54 | "notes": "Graph neural networks (GNNs) achieve remarkable | ||
55 | performance for tasks on graph data. However, recent works show they | 55 | performance for tasks on graph data. However, recent works show they | ||
56 | are extremely vulnerable to adversarial structural perturbations, | 56 | are extremely vulnerable to adversarial structural perturbations, | ||
57 | making their outcomes unreliable. In this paper, we propose | 57 | making their outcomes unreliable. In this paper, we propose | ||
58 | DefenseVGAE, a novel framework leveraging variational graph | 58 | DefenseVGAE, a novel framework leveraging variational graph | ||
59 | autoencoders (VGAEs) to defend GNNs against such attacks.", | 59 | autoencoders (VGAEs) to defend GNNs against such attacks.", | ||
n | 60 | "num_resources": 0, | n | 60 | "num_resources": 1, |
61 | "num_tags": 4, | 61 | "num_tags": 4, | ||
62 | "organization": { | 62 | "organization": { | ||
63 | "approval_status": "approved", | 63 | "approval_status": "approved", | ||
64 | "created": "2024-11-25T12:11:38.292601", | 64 | "created": "2024-11-25T12:11:38.292601", | ||
65 | "description": "", | 65 | "description": "", | ||
66 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 66 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
67 | "image_url": "", | 67 | "image_url": "", | ||
68 | "is_organization": true, | 68 | "is_organization": true, | ||
69 | "name": "no-organization", | 69 | "name": "no-organization", | ||
70 | "state": "active", | 70 | "state": "active", | ||
71 | "title": "No Organization", | 71 | "title": "No Organization", | ||
72 | "type": "organization" | 72 | "type": "organization" | ||
73 | }, | 73 | }, | ||
74 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 74 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
75 | "private": false, | 75 | "private": false, | ||
76 | "relationships_as_object": [], | 76 | "relationships_as_object": [], | ||
77 | "relationships_as_subject": [], | 77 | "relationships_as_subject": [], | ||
t | 78 | "resources": [], | t | 78 | "resources": [ |
79 | { | ||||
80 | "cache_last_updated": null, | ||||
81 | "cache_url": null, | ||||
82 | "created": "2025-01-03T00:16:33", | ||||
83 | "data": [ | ||||
84 | "dcterms:title", | ||||
85 | "dcterms:accessRights", | ||||
86 | "dcterms:creator", | ||||
87 | "dcterms:description", | ||||
88 | "dcterms:issued", | ||||
89 | "dcterms:language", | ||||
90 | "dcterms:identifier", | ||||
91 | "dcat:theme", | ||||
92 | "dcterms:type", | ||||
93 | "dcat:keyword", | ||||
94 | "dcat:landingPage", | ||||
95 | "dcterms:hasVersion", | ||||
96 | "dcterms:format", | ||||
97 | "mls:task", | ||||
98 | "datacite:isDescribedBy" | ||||
99 | ], | ||||
100 | "description": "The json representation of the dataset with its | ||||
101 | distributions based on DCAT.", | ||||
102 | "format": "JSON", | ||||
103 | "hash": "", | ||||
104 | "id": "84e851dd-7953-46a1-957f-da08b8385fba", | ||||
105 | "last_modified": "2025-01-03T00:36:12.420685", | ||||
106 | "metadata_modified": "2025-01-03T00:36:12.430664", | ||||
107 | "mimetype": "application/json", | ||||
108 | "mimetype_inner": null, | ||||
109 | "name": "Original Metadata", | ||||
110 | "package_id": "7a15ec05-d546-41d6-a64e-f96bd8adf5c3", | ||||
111 | "position": 0, | ||||
112 | "resource_type": null, | ||||
113 | "size": 1091, | ||||
114 | "state": "active", | ||||
115 | "url": | ||||
116 | resource/84e851dd-7953-46a1-957f-da08b8385fba/download/metadata.json", | ||||
117 | "url_type": "upload" | ||||
118 | } | ||||
119 | ], | ||||
79 | "services_used_list": "", | 120 | "services_used_list": "", | ||
80 | "state": "active", | 121 | "state": "active", | ||
81 | "tags": [ | 122 | "tags": [ | ||
82 | { | 123 | { | ||
83 | "display_name": "Adversarial Attacks", | 124 | "display_name": "Adversarial Attacks", | ||
84 | "id": "813812f2-3ed1-4e93-870d-dcd01263e479", | 125 | "id": "813812f2-3ed1-4e93-870d-dcd01263e479", | ||
85 | "name": "Adversarial Attacks", | 126 | "name": "Adversarial Attacks", | ||
86 | "state": "active", | 127 | "state": "active", | ||
87 | "vocabulary_id": null | 128 | "vocabulary_id": null | ||
88 | }, | 129 | }, | ||
89 | { | 130 | { | ||
90 | "display_name": "Defense", | 131 | "display_name": "Defense", | ||
91 | "id": "74fd4012-367d-4c9c-995e-e16dcfcb08d6", | 132 | "id": "74fd4012-367d-4c9c-995e-e16dcfcb08d6", | ||
92 | "name": "Defense", | 133 | "name": "Defense", | ||
93 | "state": "active", | 134 | "state": "active", | ||
94 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
95 | }, | 136 | }, | ||
96 | { | 137 | { | ||
97 | "display_name": "Graph Neural Networks", | 138 | "display_name": "Graph Neural Networks", | ||
98 | "id": "8c619694-1a66-4a7d-bcda-bb2d6265d082", | 139 | "id": "8c619694-1a66-4a7d-bcda-bb2d6265d082", | ||
99 | "name": "Graph Neural Networks", | 140 | "name": "Graph Neural Networks", | ||
100 | "state": "active", | 141 | "state": "active", | ||
101 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
102 | }, | 143 | }, | ||
103 | { | 144 | { | ||
104 | "display_name": "Variational Graph Autoencoder", | 145 | "display_name": "Variational Graph Autoencoder", | ||
105 | "id": "fcf0df6d-c3b5-4508-b701-332db827cfb9", | 146 | "id": "fcf0df6d-c3b5-4508-b701-332db827cfb9", | ||
106 | "name": "Variational Graph Autoencoder", | 147 | "name": "Variational Graph Autoencoder", | ||
107 | "state": "active", | 148 | "state": "active", | ||
108 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
109 | } | 150 | } | ||
110 | ], | 151 | ], | ||
111 | "title": "DefenseVGAE: Defending against Adversarial Attacks on | 152 | "title": "DefenseVGAE: Defending against Adversarial Attacks on | ||
112 | Graph Data via a Variational Graph Autoencoder", | 153 | Graph Data via a Variational Graph Autoencoder", | ||
113 | "type": "dataset", | 154 | "type": "dataset", | ||
114 | "version": "" | 155 | "version": "" | ||
115 | } | 156 | } |