Changes
On January 3, 2025 at 12:38:17 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Spectral Graph Wavelet Transform as Feature Extractor for Machine Learning in Neuroimaging -
Changed value of field
doi_date_published
to2025-01-03
in Spectral Graph Wavelet Transform as Feature Extractor for Machine Learning in Neuroimaging -
Added resource Original Metadata to Spectral Graph Wavelet Transform as Feature Extractor for Machine Learning in Neuroimaging
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Yusuf Yigit Pilavci", | 3 | "author": "Yusuf Yigit Pilavci", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.1910.05149", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.1910.05149", | ||
8 | "doi": "10.57702/obe96336", | 8 | "doi": "10.57702/obe96336", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2025-01-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Nicolas Farrugia", | 15 | "extra_author": "Nicolas Farrugia", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Graph Signal Processing", | 22 | "display_name": "Graph Signal Processing", | ||
23 | "id": "3e9f4974-44c0-4011-bfa2-1f89b2c898db", | 23 | "id": "3e9f4974-44c0-4011-bfa2-1f89b2c898db", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "graph-signal-processing", | 25 | "name": "graph-signal-processing", | ||
26 | "title": "Graph Signal Processing" | 26 | "title": "Graph Signal Processing" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Neuroimaging", | 30 | "display_name": "Neuroimaging", | ||
31 | "id": "236157e2-1e25-4072-997c-152b4a894477", | 31 | "id": "236157e2-1e25-4072-997c-152b4a894477", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "neuroimaging", | 33 | "name": "neuroimaging", | ||
34 | "title": "Neuroimaging" | 34 | "title": "Neuroimaging" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "id": "29ad7271-df6f-4037-8bca-ca49a6984fe3", | 37 | "id": "29ad7271-df6f-4037-8bca-ca49a6984fe3", | ||
38 | "isopen": false, | 38 | "isopen": false, | ||
39 | "landing_page": | 39 | "landing_page": | ||
40 | "https://neuroanatomyandconnectivity.github.io/opendata/", | 40 | "https://neuroanatomyandconnectivity.github.io/opendata/", | ||
41 | "license_title": null, | 41 | "license_title": null, | ||
42 | "link_orkg": "", | 42 | "link_orkg": "", | ||
43 | "metadata_created": "2025-01-03T00:38:15.695334", | 43 | "metadata_created": "2025-01-03T00:38:15.695334", | ||
n | 44 | "metadata_modified": "2025-01-03T00:38:15.695339", | n | 44 | "metadata_modified": "2025-01-03T00:38:16.259160", |
45 | "name": | 45 | "name": | ||
46 | -transform-as-feature-extractor-for-machine-learning-in-neuroimaging", | 46 | -transform-as-feature-extractor-for-machine-learning-in-neuroimaging", | ||
47 | "notes": "Graph Signal Processing has become a very useful framework | 47 | "notes": "Graph Signal Processing has become a very useful framework | ||
48 | for signal operations and representations defined on irregular | 48 | for signal operations and representations defined on irregular | ||
49 | domains. Exploiting transformations that are defined on graph models | 49 | domains. Exploiting transformations that are defined on graph models | ||
50 | can be highly beneficial when the graph encodes relationships between | 50 | can be highly beneficial when the graph encodes relationships between | ||
51 | signals.", | 51 | signals.", | ||
n | 52 | "num_resources": 0, | n | 52 | "num_resources": 1, |
53 | "num_tags": 3, | 53 | "num_tags": 3, | ||
54 | "organization": { | 54 | "organization": { | ||
55 | "approval_status": "approved", | 55 | "approval_status": "approved", | ||
56 | "created": "2024-11-25T12:11:38.292601", | 56 | "created": "2024-11-25T12:11:38.292601", | ||
57 | "description": "", | 57 | "description": "", | ||
58 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 58 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
59 | "image_url": "", | 59 | "image_url": "", | ||
60 | "is_organization": true, | 60 | "is_organization": true, | ||
61 | "name": "no-organization", | 61 | "name": "no-organization", | ||
62 | "state": "active", | 62 | "state": "active", | ||
63 | "title": "No Organization", | 63 | "title": "No Organization", | ||
64 | "type": "organization" | 64 | "type": "organization" | ||
65 | }, | 65 | }, | ||
66 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 66 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
67 | "private": false, | 67 | "private": false, | ||
68 | "relationships_as_object": [], | 68 | "relationships_as_object": [], | ||
69 | "relationships_as_subject": [], | 69 | "relationships_as_subject": [], | ||
t | 70 | "resources": [], | t | 70 | "resources": [ |
71 | { | ||||
72 | "cache_last_updated": null, | ||||
73 | "cache_url": null, | ||||
74 | "created": "2025-01-03T00:16:33", | ||||
75 | "data": [ | ||||
76 | "dcterms:title", | ||||
77 | "dcterms:accessRights", | ||||
78 | "dcterms:creator", | ||||
79 | "dcterms:description", | ||||
80 | "dcterms:issued", | ||||
81 | "dcterms:language", | ||||
82 | "dcterms:identifier", | ||||
83 | "dcat:theme", | ||||
84 | "dcterms:type", | ||||
85 | "dcat:keyword", | ||||
86 | "dcat:landingPage", | ||||
87 | "dcterms:hasVersion", | ||||
88 | "dcterms:format", | ||||
89 | "mls:task", | ||||
90 | "datacite:isDescribedBy" | ||||
91 | ], | ||||
92 | "description": "The json representation of the dataset with its | ||||
93 | distributions based on DCAT.", | ||||
94 | "format": "JSON", | ||||
95 | "hash": "", | ||||
96 | "id": "bdd797ef-bc63-44d4-b452-976baf8b3389", | ||||
97 | "last_modified": "2025-01-03T00:38:16.252188", | ||||
98 | "metadata_modified": "2025-01-03T00:38:16.262317", | ||||
99 | "mimetype": "application/json", | ||||
100 | "mimetype_inner": null, | ||||
101 | "name": "Original Metadata", | ||||
102 | "package_id": "29ad7271-df6f-4037-8bca-ca49a6984fe3", | ||||
103 | "position": 0, | ||||
104 | "resource_type": null, | ||||
105 | "size": 981, | ||||
106 | "state": "active", | ||||
107 | "url": | ||||
108 | resource/bdd797ef-bc63-44d4-b452-976baf8b3389/download/metadata.json", | ||||
109 | "url_type": "upload" | ||||
110 | } | ||||
111 | ], | ||||
71 | "services_used_list": "", | 112 | "services_used_list": "", | ||
72 | "state": "active", | 113 | "state": "active", | ||
73 | "tags": [ | 114 | "tags": [ | ||
74 | { | 115 | { | ||
75 | "display_name": "Graph Signal Processing", | 116 | "display_name": "Graph Signal Processing", | ||
76 | "id": "e493cf7a-3d70-4c88-bea4-863953f88cf1", | 117 | "id": "e493cf7a-3d70-4c88-bea4-863953f88cf1", | ||
77 | "name": "Graph Signal Processing", | 118 | "name": "Graph Signal Processing", | ||
78 | "state": "active", | 119 | "state": "active", | ||
79 | "vocabulary_id": null | 120 | "vocabulary_id": null | ||
80 | }, | 121 | }, | ||
81 | { | 122 | { | ||
82 | "display_name": "Machine Learning", | 123 | "display_name": "Machine Learning", | ||
83 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | 124 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | ||
84 | "name": "Machine Learning", | 125 | "name": "Machine Learning", | ||
85 | "state": "active", | 126 | "state": "active", | ||
86 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
87 | }, | 128 | }, | ||
88 | { | 129 | { | ||
89 | "display_name": "Neuroimaging", | 130 | "display_name": "Neuroimaging", | ||
90 | "id": "64b398c9-ce14-4ea2-a320-8f6b39b7ac8b", | 131 | "id": "64b398c9-ce14-4ea2-a320-8f6b39b7ac8b", | ||
91 | "name": "Neuroimaging", | 132 | "name": "Neuroimaging", | ||
92 | "state": "active", | 133 | "state": "active", | ||
93 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
94 | } | 135 | } | ||
95 | ], | 136 | ], | ||
96 | "title": "Spectral Graph Wavelet Transform as Feature Extractor for | 137 | "title": "Spectral Graph Wavelet Transform as Feature Extractor for | ||
97 | Machine Learning in Neuroimaging", | 138 | Machine Learning in Neuroimaging", | ||
98 | "type": "dataset", | 139 | "type": "dataset", | ||
99 | "version": "" | 140 | "version": "" | ||
100 | } | 141 | } |