Changes
On December 3, 2024 at 9:59:06 AM UTC, admin:
-
Changed title to Mvtec AD (previously MVTec-AD)
-
Set author of Mvtec AD to Pierluigi Zama Ramirez (previously Michael Mesarcika)
-
Updated description of Mvtec AD from
The MVTec-AD dataset is a collection of 128x128 grayscale images of industrial anomalies.
toA comprehensive real-world dataset for unsupervised anomaly detection.
-
Removed the following tags from Mvtec AD
-
Added tag unsupervised learning to Mvtec AD
-
Changed value of field
defined_in
to in Mvtec AD -
Changed value of field
extra_authors
to[{'extra_author': 'Giuseppe Lisanti', 'orcid': ''}, {'extra_author': 'Luigi Di Stefano', 'orcid': ''}]
in Mvtec AD -
Changed value of field
citation
to[]
in Mvtec AD -
Deleted resource Original Metadata from Mvtec AD
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
n | 3 | "author": "Michael Mesarcika", | n | 3 | "author": "Pierluigi Zama Ramirez", |
4 | "author_email": "", | 4 | "author_email": "", | ||
n | 5 | "citation": [ | n | 5 | "citation": [], |
6 | "https://doi.org/10.48550/arXiv.2407.00626", | ||||
7 | "https://doi.org/10.1016/j.array.2022.100182" | ||||
8 | ], | ||||
9 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
n | 10 | "defined_in": "https://doi.org/10.48550/arXiv.2303.14814", | n | 7 | "defined_in": "", |
11 | "doi": "10.57702/hradzobq", | 8 | "doi": "10.57702/hradzobq", | ||
12 | "doi_date_published": "2024-12-02", | 9 | "doi_date_published": "2024-12-02", | ||
13 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
14 | "doi_status": true, | 11 | "doi_status": true, | ||
15 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
16 | "extra_authors": [ | 13 | "extra_authors": [ | ||
17 | { | 14 | { | ||
n | 18 | "extra_author": "Elena Ranguelova", | n | 15 | "extra_author": "Giuseppe Lisanti", |
19 | "orcid": "" | 16 | "orcid": "" | ||
20 | }, | 17 | }, | ||
21 | { | 18 | { | ||
n | 22 | "extra_author": "Albert-Jan Boonstra", | n | 19 | "extra_author": "Luigi Di Stefano", |
23 | "orcid": "" | ||||
24 | }, | ||||
25 | { | ||||
26 | "extra_author": "Rob V. van Nieuwpoort", | ||||
27 | "orcid": "" | 20 | "orcid": "" | ||
28 | } | 21 | } | ||
29 | ], | 22 | ], | ||
30 | "groups": [ | 23 | "groups": [ | ||
31 | { | 24 | { | ||
32 | "description": "", | 25 | "description": "", | ||
33 | "display_name": "Anomaly Detection", | 26 | "display_name": "Anomaly Detection", | ||
34 | "id": "469caeeb-2eee-4858-a0f3-692b4da09dfe", | 27 | "id": "469caeeb-2eee-4858-a0f3-692b4da09dfe", | ||
35 | "image_display_url": "", | 28 | "image_display_url": "", | ||
36 | "name": "anomaly-detection", | 29 | "name": "anomaly-detection", | ||
37 | "title": "Anomaly Detection" | 30 | "title": "Anomaly Detection" | ||
n | 38 | }, | n | ||
39 | { | ||||
40 | "description": "", | ||||
41 | "display_name": "Computer Vision", | ||||
42 | "id": "d09caf7c-26c7-4e4d-bb8e-49476a90ba25", | ||||
43 | "image_display_url": "", | ||||
44 | "name": "computer-vision", | ||||
45 | "title": "Computer Vision" | ||||
46 | } | 31 | } | ||
47 | ], | 32 | ], | ||
48 | "id": "d6ec411c-f5d1-4ef5-a691-c719cbb2ca60", | 33 | "id": "d6ec411c-f5d1-4ef5-a691-c719cbb2ca60", | ||
49 | "isopen": false, | 34 | "isopen": false, | ||
50 | "landing_page": "https://www.mvtec-ad.com/", | 35 | "landing_page": "https://www.mvtec-ad.com/", | ||
51 | "license_title": null, | 36 | "license_title": null, | ||
52 | "link_orkg": "", | 37 | "link_orkg": "", | ||
53 | "metadata_created": "2024-12-02T17:52:10.070706", | 38 | "metadata_created": "2024-12-02T17:52:10.070706", | ||
n | 54 | "metadata_modified": "2024-12-02T17:52:10.401342", | n | 39 | "metadata_modified": "2024-12-03T09:59:05.308499", |
55 | "name": "mvtec-ad", | 40 | "name": "mvtec-ad", | ||
n | 56 | "notes": "The MVTec-AD dataset is a collection of 128x128 grayscale | n | 41 | "notes": "A comprehensive real-world dataset for unsupervised |
57 | images of industrial anomalies.", | 42 | anomaly detection.", | ||
58 | "num_resources": 1, | 43 | "num_resources": 0, | ||
59 | "num_tags": 7, | 44 | "num_tags": 2, | ||
60 | "organization": { | 45 | "organization": { | ||
61 | "approval_status": "approved", | 46 | "approval_status": "approved", | ||
62 | "created": "2024-11-25T12:11:38.292601", | 47 | "created": "2024-11-25T12:11:38.292601", | ||
63 | "description": "", | 48 | "description": "", | ||
64 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 49 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
65 | "image_url": "", | 50 | "image_url": "", | ||
66 | "is_organization": true, | 51 | "is_organization": true, | ||
67 | "name": "no-organization", | 52 | "name": "no-organization", | ||
68 | "state": "active", | 53 | "state": "active", | ||
69 | "title": "No Organization", | 54 | "title": "No Organization", | ||
70 | "type": "organization" | 55 | "type": "organization" | ||
71 | }, | 56 | }, | ||
72 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 57 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
73 | "private": false, | 58 | "private": false, | ||
74 | "relationships_as_object": [], | 59 | "relationships_as_object": [], | ||
75 | "relationships_as_subject": [], | 60 | "relationships_as_subject": [], | ||
n | 76 | "resources": [ | n | 61 | "resources": [], |
77 | { | ||||
78 | "cache_last_updated": null, | ||||
79 | "cache_url": null, | ||||
80 | "created": "2024-12-02T18:38:42", | ||||
81 | "data": [ | ||||
82 | "dcterms:title", | ||||
83 | "dcterms:accessRights", | ||||
84 | "dcterms:creator", | ||||
85 | "dcterms:description", | ||||
86 | "dcterms:issued", | ||||
87 | "dcterms:language", | ||||
88 | "dcterms:identifier", | ||||
89 | "dcat:theme", | ||||
90 | "dcterms:type", | ||||
91 | "dcat:keyword", | ||||
92 | "dcat:landingPage", | ||||
93 | "dcterms:hasVersion", | ||||
94 | "dcterms:format", | ||||
95 | "mls:task", | ||||
96 | "datacite:isDescribedBy" | ||||
97 | ], | ||||
98 | "description": "The json representation of the dataset with its | ||||
99 | distributions based on DCAT.", | ||||
100 | "format": "JSON", | ||||
101 | "hash": "", | ||||
102 | "id": "015a1a84-d479-44fd-9ef4-8c796d4fb971", | ||||
103 | "last_modified": "2024-12-02T17:52:10.393641", | ||||
104 | "metadata_modified": "2024-12-02T17:52:10.404308", | ||||
105 | "mimetype": "application/json", | ||||
106 | "mimetype_inner": null, | ||||
107 | "name": "Original Metadata", | ||||
108 | "package_id": "d6ec411c-f5d1-4ef5-a691-c719cbb2ca60", | ||||
109 | "position": 0, | ||||
110 | "resource_type": null, | ||||
111 | "size": 919, | ||||
112 | "state": "active", | ||||
113 | "url": | ||||
114 | resource/015a1a84-d479-44fd-9ef4-8c796d4fb971/download/metadata.json", | ||||
115 | "url_type": "upload" | ||||
116 | } | ||||
117 | ], | ||||
118 | "services_used_list": "", | 62 | "services_used_list": "", | ||
119 | "state": "active", | 63 | "state": "active", | ||
120 | "tags": [ | 64 | "tags": [ | ||
n | 121 | { | n | ||
122 | "display_name": "Anomaly Detection", | ||||
123 | "id": "772b074e-4795-4f11-80b4-362b2f8a0dca", | ||||
124 | "name": "Anomaly Detection", | ||||
125 | "state": "active", | ||||
126 | "vocabulary_id": null | ||||
127 | }, | ||||
128 | { | ||||
129 | "display_name": "Image Classification", | ||||
130 | "id": "418e2ddf-a1d3-42ac-ad05-156f79ca8e22", | ||||
131 | "name": "Image Classification", | ||||
132 | "state": "active", | ||||
133 | "vocabulary_id": null | ||||
134 | }, | ||||
135 | { | ||||
136 | "display_name": "Industrial inspection", | ||||
137 | "id": "a77e7645-873a-452b-a312-db9640ecb14b", | ||||
138 | "name": "Industrial inspection", | ||||
139 | "state": "active", | ||||
140 | "vocabulary_id": null | ||||
141 | }, | ||||
142 | { | ||||
143 | "display_name": "Real-world dataset", | ||||
144 | "id": "ea010c7d-90b7-4cb9-a032-ec248aa7398b", | ||||
145 | "name": "Real-world dataset", | ||||
146 | "state": "active", | ||||
147 | "vocabulary_id": null | ||||
148 | }, | ||||
149 | { | ||||
150 | "display_name": "Unsupervised anomaly detection", | ||||
151 | "id": "28ae245d-92d7-466d-b39e-919989d392c2", | ||||
152 | "name": "Unsupervised anomaly detection", | ||||
153 | "state": "active", | ||||
154 | "vocabulary_id": null | ||||
155 | }, | ||||
156 | { | 65 | { | ||
157 | "display_name": "anomaly detection", | 66 | "display_name": "anomaly detection", | ||
158 | "id": "0b971f39-5ef1-4478-a9bd-e9250e956e2d", | 67 | "id": "0b971f39-5ef1-4478-a9bd-e9250e956e2d", | ||
159 | "name": "anomaly detection", | 68 | "name": "anomaly detection", | ||
160 | "state": "active", | 69 | "state": "active", | ||
161 | "vocabulary_id": null | 70 | "vocabulary_id": null | ||
162 | }, | 71 | }, | ||
163 | { | 72 | { | ||
n | 164 | "display_name": "industrial anomalies", | n | 73 | "display_name": "unsupervised learning", |
165 | "id": "e2e86579-f39a-49f3-81af-98b30b67e85b", | 74 | "id": "e11856ba-dfb2-4384-b2cb-10b0659b1c02", | ||
166 | "name": "industrial anomalies", | 75 | "name": "unsupervised learning", | ||
167 | "state": "active", | 76 | "state": "active", | ||
168 | "vocabulary_id": null | 77 | "vocabulary_id": null | ||
169 | } | 78 | } | ||
170 | ], | 79 | ], | ||
t | 171 | "title": "MVTec-AD", | t | 80 | "title": "Mvtec AD", |
172 | "type": "dataset", | 81 | "type": "dataset", | ||
173 | "version": "" | 82 | "version": "" | ||
174 | } | 83 | } |