Changes
On December 16, 2024 at 8:58:25 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Doctor AI: Predicting Clinical Events -
Changed value of field
doi_date_published
to2024-12-16
in Doctor AI: Predicting Clinical Events -
Added resource Original Metadata to Doctor AI: Predicting Clinical Events
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Edward Choi", | 3 | "author": "Edward Choi", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.1511.05942", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.1511.05942", | ||
8 | "doi": "10.57702/pjynm767", | 8 | "doi": "10.57702/pjynm767", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Mohammad Taha Bahadori", | 15 | "extra_author": "Mohammad Taha Bahadori", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Andy Schuetz", | 19 | "extra_author": "Andy Schuetz", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Walter F. Stewart", | 23 | "extra_author": "Walter F. Stewart", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Jimeng Sun", | 27 | "extra_author": "Jimeng Sun", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [ | 31 | "groups": [ | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Electronic Health Records", | 34 | "display_name": "Electronic Health Records", | ||
35 | "id": "c0a3beba-631f-40f0-a497-81a4f3a9c898", | 35 | "id": "c0a3beba-631f-40f0-a497-81a4f3a9c898", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "electronic-health-records", | 37 | "name": "electronic-health-records", | ||
38 | "title": "Electronic Health Records" | 38 | "title": "Electronic Health Records" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Healthcare", | 42 | "display_name": "Healthcare", | ||
43 | "id": "6610494b-8fb3-4659-b5d9-158e75402181", | 43 | "id": "6610494b-8fb3-4659-b5d9-158e75402181", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "healthcare", | 45 | "name": "healthcare", | ||
46 | "title": "Healthcare" | 46 | "title": "Healthcare" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "d41f8440-d10a-4e1a-90a2-81947e9339e1", | 49 | "id": "d41f8440-d10a-4e1a-90a2-81947e9339e1", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "https://github.com/mp2893/doctorai", | 51 | "landing_page": "https://github.com/mp2893/doctorai", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2024-12-16T20:58:23.876232", | 54 | "metadata_created": "2024-12-16T20:58:23.876232", | ||
n | 55 | "metadata_modified": "2024-12-16T20:58:23.876237", | n | 55 | "metadata_modified": "2024-12-16T20:58:24.340462", |
56 | "name": "doctor-ai--predicting-clinical-events", | 56 | "name": "doctor-ai--predicting-clinical-events", | ||
57 | "notes": "The dataset is a longitudinal time-stamped EHR data from | 57 | "notes": "The dataset is a longitudinal time-stamped EHR data from | ||
58 | 260K patients over 8 years. Encounter records (e.g. diagnosis codes, | 58 | 260K patients over 8 years. Encounter records (e.g. diagnosis codes, | ||
59 | medication codes or procedure codes) were input to RNN to predict | 59 | medication codes or procedure codes) were input to RNN to predict | ||
60 | (all) the diagnosis and medication categories for a subsequent | 60 | (all) the diagnosis and medication categories for a subsequent | ||
61 | visit.", | 61 | visit.", | ||
n | 62 | "num_resources": 0, | n | 62 | "num_resources": 1, |
63 | "num_tags": 3, | 63 | "num_tags": 3, | ||
64 | "organization": { | 64 | "organization": { | ||
65 | "approval_status": "approved", | 65 | "approval_status": "approved", | ||
66 | "created": "2024-11-25T12:11:38.292601", | 66 | "created": "2024-11-25T12:11:38.292601", | ||
67 | "description": "", | 67 | "description": "", | ||
68 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 68 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
69 | "image_url": "", | 69 | "image_url": "", | ||
70 | "is_organization": true, | 70 | "is_organization": true, | ||
71 | "name": "no-organization", | 71 | "name": "no-organization", | ||
72 | "state": "active", | 72 | "state": "active", | ||
73 | "title": "No Organization", | 73 | "title": "No Organization", | ||
74 | "type": "organization" | 74 | "type": "organization" | ||
75 | }, | 75 | }, | ||
76 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 76 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
77 | "private": false, | 77 | "private": false, | ||
78 | "relationships_as_object": [], | 78 | "relationships_as_object": [], | ||
79 | "relationships_as_subject": [], | 79 | "relationships_as_subject": [], | ||
t | 80 | "resources": [], | t | 80 | "resources": [ |
81 | { | ||||
82 | "cache_last_updated": null, | ||||
83 | "cache_url": null, | ||||
84 | "created": "2024-12-16T18:25:47", | ||||
85 | "data": [ | ||||
86 | "dcterms:title", | ||||
87 | "dcterms:accessRights", | ||||
88 | "dcterms:creator", | ||||
89 | "dcterms:description", | ||||
90 | "dcterms:issued", | ||||
91 | "dcterms:language", | ||||
92 | "dcterms:identifier", | ||||
93 | "dcat:theme", | ||||
94 | "dcterms:type", | ||||
95 | "dcat:keyword", | ||||
96 | "dcat:landingPage", | ||||
97 | "dcterms:hasVersion", | ||||
98 | "dcterms:format", | ||||
99 | "mls:task", | ||||
100 | "datacite:isDescribedBy" | ||||
101 | ], | ||||
102 | "description": "The json representation of the dataset with its | ||||
103 | distributions based on DCAT.", | ||||
104 | "format": "JSON", | ||||
105 | "hash": "", | ||||
106 | "id": "7c391539-36cf-4eb8-97f2-712a6f3156cf", | ||||
107 | "last_modified": "2024-12-16T20:58:24.331931", | ||||
108 | "metadata_modified": "2024-12-16T20:58:24.343710", | ||||
109 | "mimetype": "application/json", | ||||
110 | "mimetype_inner": null, | ||||
111 | "name": "Original Metadata", | ||||
112 | "package_id": "d41f8440-d10a-4e1a-90a2-81947e9339e1", | ||||
113 | "position": 0, | ||||
114 | "resource_type": null, | ||||
115 | "size": 998, | ||||
116 | "state": "active", | ||||
117 | "url": | ||||
118 | resource/7c391539-36cf-4eb8-97f2-712a6f3156cf/download/metadata.json", | ||||
119 | "url_type": "upload" | ||||
120 | } | ||||
121 | ], | ||||
81 | "services_used_list": "", | 122 | "services_used_list": "", | ||
82 | "state": "active", | 123 | "state": "active", | ||
83 | "tags": [ | 124 | "tags": [ | ||
84 | { | 125 | { | ||
85 | "display_name": "Clinical Events", | 126 | "display_name": "Clinical Events", | ||
86 | "id": "043fde59-617c-4b41-9f74-5f17dd2c9734", | 127 | "id": "043fde59-617c-4b41-9f74-5f17dd2c9734", | ||
87 | "name": "Clinical Events", | 128 | "name": "Clinical Events", | ||
88 | "state": "active", | 129 | "state": "active", | ||
89 | "vocabulary_id": null | 130 | "vocabulary_id": null | ||
90 | }, | 131 | }, | ||
91 | { | 132 | { | ||
92 | "display_name": "Electronic Health Records", | 133 | "display_name": "Electronic Health Records", | ||
93 | "id": "3ad44cc1-f9c1-4b35-95c5-1350852853f3", | 134 | "id": "3ad44cc1-f9c1-4b35-95c5-1350852853f3", | ||
94 | "name": "Electronic Health Records", | 135 | "name": "Electronic Health Records", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
97 | }, | 138 | }, | ||
98 | { | 139 | { | ||
99 | "display_name": "Recurrent Neural Networks", | 140 | "display_name": "Recurrent Neural Networks", | ||
100 | "id": "a1b38204-8bdd-4bb3-ae09-e2fa9348c448", | 141 | "id": "a1b38204-8bdd-4bb3-ae09-e2fa9348c448", | ||
101 | "name": "Recurrent Neural Networks", | 142 | "name": "Recurrent Neural Networks", | ||
102 | "state": "active", | 143 | "state": "active", | ||
103 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
104 | } | 145 | } | ||
105 | ], | 146 | ], | ||
106 | "title": "Doctor AI: Predicting Clinical Events", | 147 | "title": "Doctor AI: Predicting Clinical Events", | ||
107 | "type": "dataset", | 148 | "type": "dataset", | ||
108 | "version": "" | 149 | "version": "" | ||
109 | } | 150 | } |