Changes
On December 2, 2024 at 9:37:04 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Diffusion-based Conditional ECG Generation with Structured State Space Models -
Changed value of field
doi_date_published
to2024-12-02
in Diffusion-based Conditional ECG Generation with Structured State Space Models -
Added resource Original Metadata to Diffusion-based Conditional ECG Generation with Structured State Space Models
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Juan Miguel Lopez Alcaraz", | 3 | "author": "Juan Miguel Lopez Alcaraz", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/t3degh9l", | 8 | "doi": "10.57702/t3degh9l", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Nils Strodthoff", | 15 | "extra_author": "Nils Strodthoff", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Cardiology", | 22 | "display_name": "Cardiology", | ||
23 | "id": "ba7534a4-b9a1-4747-8686-a4676a26c5a0", | 23 | "id": "ba7534a4-b9a1-4747-8686-a4676a26c5a0", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "cardiology", | 25 | "name": "cardiology", | ||
26 | "title": "Cardiology" | 26 | "title": "Cardiology" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Diffusion Models", | 30 | "display_name": "Diffusion Models", | ||
31 | "id": "92c5c06b-20eb-44ab-8212-50fe6cbf8971", | 31 | "id": "92c5c06b-20eb-44ab-8212-50fe6cbf8971", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "diffusion-models", | 33 | "name": "diffusion-models", | ||
34 | "title": "Diffusion Models" | 34 | "title": "Diffusion Models" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Electrocardiography", | 38 | "display_name": "Electrocardiography", | ||
39 | "id": "842dc05a-7e0c-4acc-8bd4-6e3b49bad603", | 39 | "id": "842dc05a-7e0c-4acc-8bd4-6e3b49bad603", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "electrocardiography", | 41 | "name": "electrocardiography", | ||
42 | "title": "Electrocardiography" | 42 | "title": "Electrocardiography" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Signal Processing", | 46 | "display_name": "Signal Processing", | ||
47 | "id": "8fa1ed24-eed6-40ad-bfdf-63ac90a7e2ec", | 47 | "id": "8fa1ed24-eed6-40ad-bfdf-63ac90a7e2ec", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "signal-processing", | 49 | "name": "signal-processing", | ||
50 | "title": "Signal Processing" | 50 | "title": "Signal Processing" | ||
51 | }, | 51 | }, | ||
52 | { | 52 | { | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "display_name": "Synthetic data", | 54 | "display_name": "Synthetic data", | ||
55 | "id": "811b488a-c719-4335-b1f5-20ffcb5b1bb4", | 55 | "id": "811b488a-c719-4335-b1f5-20ffcb5b1bb4", | ||
56 | "image_display_url": "", | 56 | "image_display_url": "", | ||
57 | "name": "synthetic-data", | 57 | "name": "synthetic-data", | ||
58 | "title": "Synthetic data" | 58 | "title": "Synthetic data" | ||
59 | }, | 59 | }, | ||
60 | { | 60 | { | ||
61 | "description": "", | 61 | "description": "", | ||
62 | "display_name": "Time Series", | 62 | "display_name": "Time Series", | ||
63 | "id": "af1c80e8-79a4-4807-8aab-1581719e8452", | 63 | "id": "af1c80e8-79a4-4807-8aab-1581719e8452", | ||
64 | "image_display_url": "", | 64 | "image_display_url": "", | ||
65 | "name": "time-series", | 65 | "name": "time-series", | ||
66 | "title": "Time Series" | 66 | "title": "Time Series" | ||
67 | } | 67 | } | ||
68 | ], | 68 | ], | ||
69 | "id": "548d3dea-482f-4ecd-a66d-5bbb87a97c01", | 69 | "id": "548d3dea-482f-4ecd-a66d-5bbb87a97c01", | ||
70 | "isopen": false, | 70 | "isopen": false, | ||
71 | "landing_page": | 71 | "landing_page": | ||
72 | /zenodo.org/account/settings/github/repository/AI4HealthUOL/SSSD-ECG", | 72 | /zenodo.org/account/settings/github/repository/AI4HealthUOL/SSSD-ECG", | ||
73 | "license_title": null, | 73 | "license_title": null, | ||
74 | "link_orkg": "", | 74 | "link_orkg": "", | ||
75 | "metadata_created": "2024-12-02T21:37:02.875147", | 75 | "metadata_created": "2024-12-02T21:37:02.875147", | ||
n | 76 | "metadata_modified": "2024-12-02T21:37:02.875152", | n | 76 | "metadata_modified": "2024-12-02T21:37:03.628916", |
77 | "name": | 77 | "name": | ||
78 | -based-conditional-ecg-generation-with-structured-state-space-models", | 78 | -based-conditional-ecg-generation-with-structured-state-space-models", | ||
79 | "notes": "Synthetic data generation is a promising solution to | 79 | "notes": "Synthetic data generation is a promising solution to | ||
80 | address privacy issues with the distribution of sensitive health data. | 80 | address privacy issues with the distribution of sensitive health data. | ||
81 | Recently, diffusion models have set new standards for generative | 81 | Recently, diffusion models have set new standards for generative | ||
82 | models for different data modalities. Also very recently, structured | 82 | models for different data modalities. Also very recently, structured | ||
83 | state space models emerged as a powerful modeling paradigm to capture | 83 | state space models emerged as a powerful modeling paradigm to capture | ||
84 | long-term dependencies in time series.", | 84 | long-term dependencies in time series.", | ||
n | 85 | "num_resources": 0, | n | 85 | "num_resources": 1, |
86 | "num_tags": 4, | 86 | "num_tags": 4, | ||
87 | "organization": { | 87 | "organization": { | ||
88 | "approval_status": "approved", | 88 | "approval_status": "approved", | ||
89 | "created": "2024-11-25T12:11:38.292601", | 89 | "created": "2024-11-25T12:11:38.292601", | ||
90 | "description": "", | 90 | "description": "", | ||
91 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 91 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
92 | "image_url": "", | 92 | "image_url": "", | ||
93 | "is_organization": true, | 93 | "is_organization": true, | ||
94 | "name": "no-organization", | 94 | "name": "no-organization", | ||
95 | "state": "active", | 95 | "state": "active", | ||
96 | "title": "No Organization", | 96 | "title": "No Organization", | ||
97 | "type": "organization" | 97 | "type": "organization" | ||
98 | }, | 98 | }, | ||
99 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 99 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
100 | "private": false, | 100 | "private": false, | ||
101 | "relationships_as_object": [], | 101 | "relationships_as_object": [], | ||
102 | "relationships_as_subject": [], | 102 | "relationships_as_subject": [], | ||
t | 103 | "resources": [], | t | 103 | "resources": [ |
104 | { | ||||
105 | "cache_last_updated": null, | ||||
106 | "cache_url": null, | ||||
107 | "created": "2024-12-02T22:29:38", | ||||
108 | "data": [ | ||||
109 | "dcterms:title", | ||||
110 | "dcterms:accessRights", | ||||
111 | "dcterms:creator", | ||||
112 | "dcterms:description", | ||||
113 | "dcterms:issued", | ||||
114 | "dcterms:language", | ||||
115 | "dcterms:identifier", | ||||
116 | "dcat:theme", | ||||
117 | "dcterms:type", | ||||
118 | "dcat:keyword", | ||||
119 | "dcat:landingPage", | ||||
120 | "dcterms:hasVersion", | ||||
121 | "dcterms:format", | ||||
122 | "mls:task" | ||||
123 | ], | ||||
124 | "description": "The json representation of the dataset with its | ||||
125 | distributions based on DCAT.", | ||||
126 | "format": "JSON", | ||||
127 | "hash": "", | ||||
128 | "id": "0b32b162-d81b-4811-94f1-9eb36ce8c9df", | ||||
129 | "last_modified": "2024-12-02T21:37:03.621364", | ||||
130 | "metadata_modified": "2024-12-02T21:37:03.631662", | ||||
131 | "mimetype": "application/json", | ||||
132 | "mimetype_inner": null, | ||||
133 | "name": "Original Metadata", | ||||
134 | "package_id": "548d3dea-482f-4ecd-a66d-5bbb87a97c01", | ||||
135 | "position": 0, | ||||
136 | "resource_type": null, | ||||
137 | "size": 1127, | ||||
138 | "state": "active", | ||||
139 | "url": | ||||
140 | resource/0b32b162-d81b-4811-94f1-9eb36ce8c9df/download/metadata.json", | ||||
141 | "url_type": "upload" | ||||
142 | } | ||||
143 | ], | ||||
104 | "services_used_list": "", | 144 | "services_used_list": "", | ||
105 | "state": "active", | 145 | "state": "active", | ||
106 | "tags": [ | 146 | "tags": [ | ||
107 | { | 147 | { | ||
108 | "display_name": "Diffusion models", | 148 | "display_name": "Diffusion models", | ||
109 | "id": "ea4f4793-a811-49bc-8f88-33550278d84f", | 149 | "id": "ea4f4793-a811-49bc-8f88-33550278d84f", | ||
110 | "name": "Diffusion models", | 150 | "name": "Diffusion models", | ||
111 | "state": "active", | 151 | "state": "active", | ||
112 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
113 | }, | 153 | }, | ||
114 | { | 154 | { | ||
115 | "display_name": "ECG", | 155 | "display_name": "ECG", | ||
116 | "id": "ccfae47f-089b-4315-bf52-aac716b895bb", | 156 | "id": "ccfae47f-089b-4315-bf52-aac716b895bb", | ||
117 | "name": "ECG", | 157 | "name": "ECG", | ||
118 | "state": "active", | 158 | "state": "active", | ||
119 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
120 | }, | 160 | }, | ||
121 | { | 161 | { | ||
122 | "display_name": "Structured state space models", | 162 | "display_name": "Structured state space models", | ||
123 | "id": "e984f02e-4235-409b-8c98-1c4598ad04cb", | 163 | "id": "e984f02e-4235-409b-8c98-1c4598ad04cb", | ||
124 | "name": "Structured state space models", | 164 | "name": "Structured state space models", | ||
125 | "state": "active", | 165 | "state": "active", | ||
126 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
127 | }, | 167 | }, | ||
128 | { | 168 | { | ||
129 | "display_name": "Synthetic data generation", | 169 | "display_name": "Synthetic data generation", | ||
130 | "id": "ea0d0125-9c85-45c7-97d4-91c6fa3521a3", | 170 | "id": "ea0d0125-9c85-45c7-97d4-91c6fa3521a3", | ||
131 | "name": "Synthetic data generation", | 171 | "name": "Synthetic data generation", | ||
132 | "state": "active", | 172 | "state": "active", | ||
133 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
134 | } | 174 | } | ||
135 | ], | 175 | ], | ||
136 | "title": "Diffusion-based Conditional ECG Generation with Structured | 176 | "title": "Diffusion-based Conditional ECG Generation with Structured | ||
137 | State Space Models", | 177 | State Space Models", | ||
138 | "type": "dataset", | 178 | "type": "dataset", | ||
139 | "version": "" | 179 | "version": "" | ||
140 | } | 180 | } |