Changes
On December 2, 2024 at 9:34:01 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Exploiting Spatial-Temporal Data for Sleep Stage Classification via Hypergraph Learning -
Changed value of field
doi_date_published
to2024-12-02
in Exploiting Spatial-Temporal Data for Sleep Stage Classification via Hypergraph Learning -
Added resource Original Metadata to Exploiting Spatial-Temporal Data for Sleep Stage Classification via Hypergraph Learning
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Yuze Liu", | 3 | "author": "Yuze Liu", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2309.02124", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2309.02124", | ||
8 | "doi": "10.57702/tdfcq37c", | 8 | "doi": "10.57702/tdfcq37c", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Ziming Zhao", | 15 | "extra_author": "Ziming Zhao", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Tiehua Zhang", | 19 | "extra_author": "Tiehua Zhang", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Kang Wang", | 23 | "extra_author": "Kang Wang", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Xin Chen", | 27 | "extra_author": "Xin Chen", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Xiaowei Huang", | 31 | "extra_author": "Xiaowei Huang", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "extra_author": "Jun Yin", | 35 | "extra_author": "Jun Yin", | ||
36 | "orcid": "" | 36 | "orcid": "" | ||
37 | }, | 37 | }, | ||
38 | { | 38 | { | ||
39 | "extra_author": "Zhishu Shen", | 39 | "extra_author": "Zhishu Shen", | ||
40 | "orcid": "" | 40 | "orcid": "" | ||
41 | } | 41 | } | ||
42 | ], | 42 | ], | ||
43 | "groups": [ | 43 | "groups": [ | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Sleep Stage Classification", | 46 | "display_name": "Sleep Stage Classification", | ||
47 | "id": "73197de5-6352-4421-bda5-9286f0689cf2", | 47 | "id": "73197de5-6352-4421-bda5-9286f0689cf2", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "sleep-stage-classification", | 49 | "name": "sleep-stage-classification", | ||
50 | "title": "Sleep Stage Classification" | 50 | "title": "Sleep Stage Classification" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "97876be9-5dbb-4dec-9804-8354a4845dff", | 53 | "id": "97876be9-5dbb-4dec-9804-8354a4845dff", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": "https://arxiv.org/abs/2303.12345", | 55 | "landing_page": "https://arxiv.org/abs/2303.12345", | ||
56 | "license_title": null, | 56 | "license_title": null, | ||
57 | "link_orkg": "", | 57 | "link_orkg": "", | ||
58 | "metadata_created": "2024-12-02T21:33:59.951701", | 58 | "metadata_created": "2024-12-02T21:33:59.951701", | ||
n | 59 | "metadata_modified": "2024-12-02T21:33:59.951706", | n | 59 | "metadata_modified": "2024-12-02T21:34:00.499601", |
60 | "name": | 60 | "name": | ||
61 | temporal-data-for-sleep-stage-classification-via-hypergraph-learning", | 61 | temporal-data-for-sleep-stage-classification-via-hypergraph-learning", | ||
62 | "notes": "Sleep stage classification is crucial for detecting | 62 | "notes": "Sleep stage classification is crucial for detecting | ||
63 | patients' health conditions. Existing models, which mainly use | 63 | patients' health conditions. Existing models, which mainly use | ||
64 | Convolitional Neural Networks (CNN) for modelling Euclidean data and | 64 | Convolitional Neural Networks (CNN) for modelling Euclidean data and | ||
65 | Graph Convolution Networks (GNN) for modelling non-Euclidean data, are | 65 | Graph Convolution Networks (GNN) for modelling non-Euclidean data, are | ||
66 | unable to consider the heterogeneity and interactivity of multimodal | 66 | unable to consider the heterogeneity and interactivity of multimodal | ||
67 | data as well as the spatial-temporal correlation simultaneously, which | 67 | data as well as the spatial-temporal correlation simultaneously, which | ||
68 | hinders a further improvement of classification performance.", | 68 | hinders a further improvement of classification performance.", | ||
n | 69 | "num_resources": 0, | n | 69 | "num_resources": 1, |
70 | "num_tags": 4, | 70 | "num_tags": 4, | ||
71 | "organization": { | 71 | "organization": { | ||
72 | "approval_status": "approved", | 72 | "approval_status": "approved", | ||
73 | "created": "2024-11-25T12:11:38.292601", | 73 | "created": "2024-11-25T12:11:38.292601", | ||
74 | "description": "", | 74 | "description": "", | ||
75 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 75 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
76 | "image_url": "", | 76 | "image_url": "", | ||
77 | "is_organization": true, | 77 | "is_organization": true, | ||
78 | "name": "no-organization", | 78 | "name": "no-organization", | ||
79 | "state": "active", | 79 | "state": "active", | ||
80 | "title": "No Organization", | 80 | "title": "No Organization", | ||
81 | "type": "organization" | 81 | "type": "organization" | ||
82 | }, | 82 | }, | ||
83 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 83 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
84 | "private": false, | 84 | "private": false, | ||
85 | "relationships_as_object": [], | 85 | "relationships_as_object": [], | ||
86 | "relationships_as_subject": [], | 86 | "relationships_as_subject": [], | ||
t | 87 | "resources": [], | t | 87 | "resources": [ |
88 | { | ||||
89 | "cache_last_updated": null, | ||||
90 | "cache_url": null, | ||||
91 | "created": "2024-12-02T22:29:38", | ||||
92 | "data": [ | ||||
93 | "dcterms:title", | ||||
94 | "dcterms:accessRights", | ||||
95 | "dcterms:creator", | ||||
96 | "dcterms:description", | ||||
97 | "dcterms:issued", | ||||
98 | "dcterms:language", | ||||
99 | "dcterms:identifier", | ||||
100 | "dcat:theme", | ||||
101 | "dcterms:type", | ||||
102 | "dcat:keyword", | ||||
103 | "dcat:landingPage", | ||||
104 | "dcterms:hasVersion", | ||||
105 | "dcterms:format", | ||||
106 | "mls:task", | ||||
107 | "datacite:isDescribedBy" | ||||
108 | ], | ||||
109 | "description": "The json representation of the dataset with its | ||||
110 | distributions based on DCAT.", | ||||
111 | "format": "JSON", | ||||
112 | "hash": "", | ||||
113 | "id": "3b34ce3b-12b1-4b4e-8843-12985a4d1cca", | ||||
114 | "last_modified": "2024-12-02T21:34:00.492115", | ||||
115 | "metadata_modified": "2024-12-02T21:34:00.502348", | ||||
116 | "mimetype": "application/json", | ||||
117 | "mimetype_inner": null, | ||||
118 | "name": "Original Metadata", | ||||
119 | "package_id": "97876be9-5dbb-4dec-9804-8354a4845dff", | ||||
120 | "position": 0, | ||||
121 | "resource_type": null, | ||||
122 | "size": 1228, | ||||
123 | "state": "active", | ||||
124 | "url": | ||||
125 | resource/3b34ce3b-12b1-4b4e-8843-12985a4d1cca/download/metadata.json", | ||||
126 | "url_type": "upload" | ||||
127 | } | ||||
128 | ], | ||||
88 | "services_used_list": "", | 129 | "services_used_list": "", | ||
89 | "state": "active", | 130 | "state": "active", | ||
90 | "tags": [ | 131 | "tags": [ | ||
91 | { | 132 | { | ||
92 | "display_name": "Hypergraph Learning", | 133 | "display_name": "Hypergraph Learning", | ||
93 | "id": "31842c43-cf2c-4907-86ac-983d9dada575", | 134 | "id": "31842c43-cf2c-4907-86ac-983d9dada575", | ||
94 | "name": "Hypergraph Learning", | 135 | "name": "Hypergraph Learning", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
97 | }, | 138 | }, | ||
98 | { | 139 | { | ||
99 | "display_name": "Multimodal Data", | 140 | "display_name": "Multimodal Data", | ||
100 | "id": "fbeb6437-73ab-4d00-aaba-4fff5139add9", | 141 | "id": "fbeb6437-73ab-4d00-aaba-4fff5139add9", | ||
101 | "name": "Multimodal Data", | 142 | "name": "Multimodal Data", | ||
102 | "state": "active", | 143 | "state": "active", | ||
103 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
104 | }, | 145 | }, | ||
105 | { | 146 | { | ||
106 | "display_name": "Sleep Stage Classification", | 147 | "display_name": "Sleep Stage Classification", | ||
107 | "id": "c5a6608e-6285-41f3-a21d-c0dab955f8c6", | 148 | "id": "c5a6608e-6285-41f3-a21d-c0dab955f8c6", | ||
108 | "name": "Sleep Stage Classification", | 149 | "name": "Sleep Stage Classification", | ||
109 | "state": "active", | 150 | "state": "active", | ||
110 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
111 | }, | 152 | }, | ||
112 | { | 153 | { | ||
113 | "display_name": "Spatial-Temporal Data", | 154 | "display_name": "Spatial-Temporal Data", | ||
114 | "id": "d64d5833-a8bf-4094-afae-0666d41f413a", | 155 | "id": "d64d5833-a8bf-4094-afae-0666d41f413a", | ||
115 | "name": "Spatial-Temporal Data", | 156 | "name": "Spatial-Temporal Data", | ||
116 | "state": "active", | 157 | "state": "active", | ||
117 | "vocabulary_id": null | 158 | "vocabulary_id": null | ||
118 | } | 159 | } | ||
119 | ], | 160 | ], | ||
120 | "title": "Exploiting Spatial-Temporal Data for Sleep Stage | 161 | "title": "Exploiting Spatial-Temporal Data for Sleep Stage | ||
121 | Classification via Hypergraph Learning", | 162 | Classification via Hypergraph Learning", | ||
122 | "type": "dataset", | 163 | "type": "dataset", | ||
123 | "version": "" | 164 | "version": "" | ||
124 | } | 165 | } |