Changes
On December 3, 2024 at 9:36:57 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Point Attention Network for Semantic Segmentation of 3D Point Clouds -
Changed value of field
doi_date_published
to2024-12-03
in Point Attention Network for Semantic Segmentation of 3D Point Clouds -
Added resource Original Metadata to Point Attention Network for Semantic Segmentation of 3D Point Clouds
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Mingtao Feng", | 3 | "author": "Mingtao Feng", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/izonic5u", | 8 | "doi": "10.57702/izonic5u", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Liang Zhang", | 15 | "extra_author": "Liang Zhang", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Xuefei Lin", | 19 | "extra_author": "Xuefei Lin", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Syed Zulqarnain Gilani", | 23 | "extra_author": "Syed Zulqarnain Gilani", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Ajmal Miandad", | 27 | "extra_author": "Ajmal Miandad", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [ | 31 | "groups": [ | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "3D Point Clouds", | 34 | "display_name": "3D Point Clouds", | ||
35 | "id": "625c463b-8cb0-4180-af63-ed8448fb60dd", | 35 | "id": "625c463b-8cb0-4180-af63-ed8448fb60dd", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "3d-point-clouds", | 37 | "name": "3d-point-clouds", | ||
38 | "title": "3D Point Clouds" | 38 | "title": "3D Point Clouds" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Semantic Segmentation", | 42 | "display_name": "Semantic Segmentation", | ||
43 | "id": "8c3f2eee-f5f9-464d-9c0a-1a5e7a925c0e", | 43 | "id": "8c3f2eee-f5f9-464d-9c0a-1a5e7a925c0e", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "semantic-segmentation", | 45 | "name": "semantic-segmentation", | ||
46 | "title": "Semantic Segmentation" | 46 | "title": "Semantic Segmentation" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "e5086f9b-e04c-4ec5-bdff-4e0a7ee1a3ab", | 49 | "id": "e5086f9b-e04c-4ec5-bdff-4e0a7ee1a3ab", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "", | 51 | "landing_page": "", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2024-12-03T09:36:56.005504", | 54 | "metadata_created": "2024-12-03T09:36:56.005504", | ||
n | 55 | "metadata_modified": "2024-12-03T09:36:56.005509", | n | 55 | "metadata_modified": "2024-12-03T09:36:56.428806", |
56 | "name": | 56 | "name": | ||
57 | point-attention-network-for-semantic-segmentation-of-3d-point-clouds", | 57 | point-attention-network-for-semantic-segmentation-of-3d-point-clouds", | ||
58 | "notes": "Convolutional Neural Networks (CNNs) have performed | 58 | "notes": "Convolutional Neural Networks (CNNs) have performed | ||
59 | extremely well on data represented by regularly arranged grids such as | 59 | extremely well on data represented by regularly arranged grids such as | ||
60 | images. However, directly leveraging the classic convolution kernels | 60 | images. However, directly leveraging the classic convolution kernels | ||
61 | or parameter sharing mechanisms on sparse 3D point clouds is | 61 | or parameter sharing mechanisms on sparse 3D point clouds is | ||
62 | inef\ufb01cient due to their irregular and unordered nature. We | 62 | inef\ufb01cient due to their irregular and unordered nature. We | ||
63 | propose a point attention network that learns rich local shape | 63 | propose a point attention network that learns rich local shape | ||
64 | features and their contextual correlations for 3D point cloud semantic | 64 | features and their contextual correlations for 3D point cloud semantic | ||
65 | segmentation.", | 65 | segmentation.", | ||
n | 66 | "num_resources": 0, | n | 66 | "num_resources": 1, |
67 | "num_tags": 3, | 67 | "num_tags": 3, | ||
68 | "organization": { | 68 | "organization": { | ||
69 | "approval_status": "approved", | 69 | "approval_status": "approved", | ||
70 | "created": "2024-11-25T12:11:38.292601", | 70 | "created": "2024-11-25T12:11:38.292601", | ||
71 | "description": "", | 71 | "description": "", | ||
72 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 72 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
73 | "image_url": "", | 73 | "image_url": "", | ||
74 | "is_organization": true, | 74 | "is_organization": true, | ||
75 | "name": "no-organization", | 75 | "name": "no-organization", | ||
76 | "state": "active", | 76 | "state": "active", | ||
77 | "title": "No Organization", | 77 | "title": "No Organization", | ||
78 | "type": "organization" | 78 | "type": "organization" | ||
79 | }, | 79 | }, | ||
80 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 80 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
81 | "private": false, | 81 | "private": false, | ||
82 | "relationships_as_object": [], | 82 | "relationships_as_object": [], | ||
83 | "relationships_as_subject": [], | 83 | "relationships_as_subject": [], | ||
t | 84 | "resources": [], | t | 84 | "resources": [ |
85 | { | ||||
86 | "cache_last_updated": null, | ||||
87 | "cache_url": null, | ||||
88 | "created": "2024-12-03T10:17:29", | ||||
89 | "data": [ | ||||
90 | "dcterms:title", | ||||
91 | "dcterms:accessRights", | ||||
92 | "dcterms:creator", | ||||
93 | "dcterms:description", | ||||
94 | "dcterms:issued", | ||||
95 | "dcterms:language", | ||||
96 | "dcterms:identifier", | ||||
97 | "dcat:theme", | ||||
98 | "dcterms:type", | ||||
99 | "dcat:keyword", | ||||
100 | "dcat:landingPage", | ||||
101 | "dcterms:hasVersion", | ||||
102 | "dcterms:format", | ||||
103 | "mls:task" | ||||
104 | ], | ||||
105 | "description": "The json representation of the dataset with its | ||||
106 | distributions based on DCAT.", | ||||
107 | "format": "JSON", | ||||
108 | "hash": "", | ||||
109 | "id": "b6a52c4d-562c-433d-8a20-d8ca609dbc50", | ||||
110 | "last_modified": "2024-12-03T09:36:56.421389", | ||||
111 | "metadata_modified": "2024-12-03T09:36:56.431786", | ||||
112 | "mimetype": "application/json", | ||||
113 | "mimetype_inner": null, | ||||
114 | "name": "Original Metadata", | ||||
115 | "package_id": "e5086f9b-e04c-4ec5-bdff-4e0a7ee1a3ab", | ||||
116 | "position": 0, | ||||
117 | "resource_type": null, | ||||
118 | "size": 1089, | ||||
119 | "state": "active", | ||||
120 | "url": | ||||
121 | resource/b6a52c4d-562c-433d-8a20-d8ca609dbc50/download/metadata.json", | ||||
122 | "url_type": "upload" | ||||
123 | } | ||||
124 | ], | ||||
85 | "services_used_list": "", | 125 | "services_used_list": "", | ||
86 | "state": "active", | 126 | "state": "active", | ||
87 | "tags": [ | 127 | "tags": [ | ||
88 | { | 128 | { | ||
89 | "display_name": "3D Point Clouds", | 129 | "display_name": "3D Point Clouds", | ||
90 | "id": "55c31270-45cd-40ec-8846-a614fb63a2a8", | 130 | "id": "55c31270-45cd-40ec-8846-a614fb63a2a8", | ||
91 | "name": "3D Point Clouds", | 131 | "name": "3D Point Clouds", | ||
92 | "state": "active", | 132 | "state": "active", | ||
93 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
94 | }, | 134 | }, | ||
95 | { | 135 | { | ||
96 | "display_name": "Point Attention Network", | 136 | "display_name": "Point Attention Network", | ||
97 | "id": "2612f24a-9daa-450b-8788-ae38693bfa47", | 137 | "id": "2612f24a-9daa-450b-8788-ae38693bfa47", | ||
98 | "name": "Point Attention Network", | 138 | "name": "Point Attention Network", | ||
99 | "state": "active", | 139 | "state": "active", | ||
100 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
101 | }, | 141 | }, | ||
102 | { | 142 | { | ||
103 | "display_name": "Semantic Segmentation", | 143 | "display_name": "Semantic Segmentation", | ||
104 | "id": "809ad6af-28cd-43bd-974d-055a5c0f2973", | 144 | "id": "809ad6af-28cd-43bd-974d-055a5c0f2973", | ||
105 | "name": "Semantic Segmentation", | 145 | "name": "Semantic Segmentation", | ||
106 | "state": "active", | 146 | "state": "active", | ||
107 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
108 | } | 148 | } | ||
109 | ], | 149 | ], | ||
110 | "title": "Point Attention Network for Semantic Segmentation of 3D | 150 | "title": "Point Attention Network for Semantic Segmentation of 3D | ||
111 | Point Clouds", | 151 | Point Clouds", | ||
112 | "type": "dataset", | 152 | "type": "dataset", | ||
113 | "version": "" | 153 | "version": "" | ||
114 | } | 154 | } |