f | { | f | { |
| "access_rights": "", | | "access_rights": "", |
n | "author": "David Gutman", | n | "author": "Lei Shi", |
| "author_email": "", | | "author_email": "", |
| "citation": [], | | "citation": [], |
| "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", |
n | "defined_in": "https://doi.org/10.48550/arXiv.2406.00663", | n | "defined_in": "https://doi.org/10.48550/arXiv.2306.04905", |
| "doi": "10.57702/r4g0elps", | | "doi": "10.57702/r4g0elps", |
| "doi_date_published": "2024-12-16", | | "doi_date_published": "2024-12-16", |
| "doi_publisher": "TIB", | | "doi_publisher": "TIB", |
| "doi_status": true, | | "doi_status": true, |
| "domain": "https://service.tib.eu/ldmservice", | | "domain": "https://service.tib.eu/ldmservice", |
| "extra_authors": [ | | "extra_authors": [ |
| { | | { |
n | "extra_author": "Jorge Bernal", | n | "extra_author": "Tianyu Gao", |
| | | "orcid": "" |
| | | }, |
| | | { |
| | | "extra_author": "Zheng Zhang", |
| | | "orcid": "" |
| | | }, |
| | | { |
| | | "extra_author": "Junxing Zhang", |
| "orcid": "" | | "orcid": "" |
| } | | } |
| ], | | ], |
| "groups": [ | | "groups": [ |
| { | | { |
| "description": "", | | "description": "", |
n | "display_name": "Image Segmentation", | n | "display_name": "Medical Image Segmentation", |
| "id": "7c8cc5f1-a9b2-4924-82ec-9e3aa3049a04", | | "id": "30b6f278-a6f5-4a21-8a07-80737406cc87", |
| "image_display_url": "", | | "image_display_url": "", |
n | "name": "image-segmentation", | n | "name": "medical-image-segmentation", |
| "title": "Image Segmentation" | | "title": "Medical Image Segmentation" |
| }, | | |
| { | | |
| "description": "", | | |
| "display_name": "Medical Imaging", | | |
| "id": "b86e8f52-a230-44ce-b290-7823c9f6a877", | | |
| "image_display_url": "", | | |
| "name": "medical-imaging", | | |
| "title": "Medical Imaging" | | |
| } | | } |
| ], | | ], |
| "id": "21c4f693-5ffb-4083-ba38-ca7f90cdcf3f", | | "id": "21c4f693-5ffb-4083-ba38-ca7f90cdcf3f", |
| "isopen": false, | | "isopen": false, |
n | "landing_page": "https://data.mendeley.com/datasets/3q7qyj4wzr/2", | n | "landing_page": "https://www.isic.isicchallenge.org/", |
| "license_title": null, | | "license_title": null, |
| "link_orkg": "", | | "link_orkg": "", |
| "metadata_created": "2024-12-16T18:12:02.918120", | | "metadata_created": "2024-12-16T18:12:02.918120", |
n | "metadata_modified": "2024-12-16T18:12:03.337951", | n | "metadata_modified": "2024-12-16T19:11:53.306408", |
| "name": "isic-2016", | | "name": "isic-2016", |
n | "notes": "Dataset of dermoscopic images for melanoma detection | n | "notes": "Automated medical image segmentation can assist doctors to |
| tasks.", | | diagnose faster and more accurate. Deep learning based models for |
| | | medical image segmentation have made great progress in recent years.", |
| "num_resources": 1, | | "num_resources": 0, |
| "num_tags": 3, | | "num_tags": 5, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2024-11-25T12:11:38.292601", | | "created": "2024-11-25T12:11:38.292601", |
| "description": "", | | "description": "", |
| "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", |
| "image_url": "", | | "image_url": "", |
| "is_organization": true, | | "is_organization": true, |
| "name": "no-organization", | | "name": "no-organization", |
| "state": "active", | | "state": "active", |
| "title": "No Organization", | | "title": "No Organization", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", |
| "private": false, | | "private": false, |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
n | "resources": [ | n | "resources": [], |
| { | | |
| "cache_last_updated": null, | | |
| "cache_url": null, | | |
| "created": "2024-12-16T18:25:33", | | |
| "data": [ | | |
| "dcterms:title", | | |
| "dcterms:accessRights", | | |
| "dcterms:creator", | | |
| "dcterms:description", | | |
| "dcterms:issued", | | |
| "dcterms:language", | | |
| "dcterms:identifier", | | |
| "dcat:theme", | | |
| "dcterms:type", | | |
| "dcat:keyword", | | |
| "dcat:landingPage", | | |
| "dcterms:hasVersion", | | |
| "dcterms:format", | | |
| "mls:task", | | |
| "datacite:isDescribedBy" | | |
| ], | | |
| "description": "The json representation of the dataset with its | | |
| distributions based on DCAT.", | | |
| "format": "JSON", | | |
| "hash": "", | | |
| "id": "158a4330-2fbd-40f9-8daa-67392ddbd355", | | |
| "last_modified": "2024-12-16T18:12:03.329864", | | |
| "metadata_modified": "2024-12-16T18:12:03.340774", | | |
| "mimetype": "application/json", | | |
| "mimetype_inner": null, | | |
| "name": "Original Metadata", | | |
| "package_id": "21c4f693-5ffb-4083-ba38-ca7f90cdcf3f", | | |
| "position": 0, | | |
| "resource_type": null, | | |
| "size": 656, | | |
| "state": "active", | | |
| "url": | | |
| resource/158a4330-2fbd-40f9-8daa-67392ddbd355/download/metadata.json", | | |
| "url_type": "upload" | | |
| } | | |
| ], | | |
| "services_used_list": "", | | "services_used_list": "", |
| "state": "active", | | "state": "active", |
| "tags": [ | | "tags": [ |
| { | | { |
n | "display_name": "Dermoscopy", | n | "display_name": "Medical Image", |
| "id": "ba6efd5c-585c-4885-b678-b066e716b29a", | | "id": "2d1678dc-0e21-4a4b-992b-104ba94d2734", |
| "name": "Dermoscopy", | | "name": "Medical Image", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
n | "display_name": "Medical Imaging", | n | "display_name": "Medical Image Analysis", |
| "id": "10261ea5-4420-472c-8004-e29d20a88fb8", | | "id": "7723629d-5b10-4e0b-9214-7aeb8f5d58cc", |
| "name": "Medical Imaging", | | "name": "Medical Image Analysis", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
n | "display_name": "Melanoma Detection", | n | "display_name": "Segmentation", |
| "id": "f5618a9b-650f-41bf-b8ba-439853b1c641", | | "id": "afba543e-f91f-4800-834e-77535c9e8dac", |
| "name": "Melanoma Detection", | | "name": "Segmentation", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "Skin Lesion", |
| | | "id": "3a035528-8523-4800-9961-63f3772f8090", |
| | | "name": "Skin Lesion", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "Skin Lesions", |
| | | "id": "0aa0fb65-4cc8-4a92-964c-78861b636c51", |
| | | "name": "Skin Lesions", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| } | | } |
| ], | | ], |
t | "title": "ISIC-2016", | t | "title": "ISIC 2016", |
| "type": "dataset", | | "type": "dataset", |
| "version": "" | | "version": "" |
| } | | } |