Changes
On December 17, 2024 at 8:24:16 AM UTC, admin:
-
Changed value of field
doi_date_published
to2024-12-17
in SimFair: A Unified Framework for Fairness-Aware Multi-Label Classification -
Changed value of field
doi_status
toTrue
in SimFair: A Unified Framework for Fairness-Aware Multi-Label Classification -
Added resource Original Metadata to SimFair: A Unified Framework for Fairness-Aware Multi-Label Classification
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Tianci Liu", | 3 | "author": "Tianci Liu", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2302.09683", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2302.09683", | ||
8 | "doi": "10.57702/mc83pca6", | 8 | "doi": "10.57702/mc83pca6", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-17", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Haoyu Wang", | 15 | "extra_author": "Haoyu Wang", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Yaqing Wang", | 19 | "extra_author": "Yaqing Wang", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Xiaoqian Wang", | 23 | "extra_author": "Xiaoqian Wang", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Lu Su", | 27 | "extra_author": "Lu Su", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Jing Gao", | 31 | "extra_author": "Jing Gao", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Fairness in machine learning", | 38 | "display_name": "Fairness in machine learning", | ||
39 | "id": "acd9ab59-b298-49cd-8e2b-8de7d366522b", | 39 | "id": "acd9ab59-b298-49cd-8e2b-8de7d366522b", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "fairness-in-machine-learning", | 41 | "name": "fairness-in-machine-learning", | ||
42 | "title": "Fairness in machine learning" | 42 | "title": "Fairness in machine learning" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Multi-Label Classification", | 46 | "display_name": "Multi-Label Classification", | ||
47 | "id": "6f9e0de4-7c26-404c-af3c-2f4cca3ff39b", | 47 | "id": "6f9e0de4-7c26-404c-af3c-2f4cca3ff39b", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "multi-label-classification", | 49 | "name": "multi-label-classification", | ||
50 | "title": "Multi-Label Classification" | 50 | "title": "Multi-Label Classification" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "93a976b9-b48d-459d-a341-b9cdf49adb64", | 53 | "id": "93a976b9-b48d-459d-a341-b9cdf49adb64", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": "https://arxiv.org/abs/2106.09567", | 55 | "landing_page": "https://arxiv.org/abs/2106.09567", | ||
56 | "license_title": null, | 56 | "license_title": null, | ||
57 | "link_orkg": "", | 57 | "link_orkg": "", | ||
58 | "metadata_created": "2024-12-17T08:24:14.976182", | 58 | "metadata_created": "2024-12-17T08:24:14.976182", | ||
n | 59 | "metadata_modified": "2024-12-17T08:24:14.976190", | n | 59 | "metadata_modified": "2024-12-17T08:24:15.535618", |
60 | "name": | 60 | "name": | ||
61 | air--a-uni-ed-framework-for-fairness-aware-multi-label-classi-cation", | 61 | air--a-uni-ed-framework-for-fairness-aware-multi-label-classi-cation", | ||
62 | "notes": "The authors used two tabular datasets, Adult and Credit, | 62 | "notes": "The authors used two tabular datasets, Adult and Credit, | ||
63 | that are ubiquitous in fairness literature, and transformed them into | 63 | that are ubiquitous in fairness literature, and transformed them into | ||
64 | multi-label settings.", | 64 | multi-label settings.", | ||
n | 65 | "num_resources": 0, | n | 65 | "num_resources": 1, |
66 | "num_tags": 4, | 66 | "num_tags": 4, | ||
67 | "organization": { | 67 | "organization": { | ||
68 | "approval_status": "approved", | 68 | "approval_status": "approved", | ||
69 | "created": "2024-11-25T12:11:38.292601", | 69 | "created": "2024-11-25T12:11:38.292601", | ||
70 | "description": "", | 70 | "description": "", | ||
71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
72 | "image_url": "", | 72 | "image_url": "", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "no-organization", | 74 | "name": "no-organization", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "No Organization", | 76 | "title": "No Organization", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2024-12-17T09:12:47", | ||||
88 | "data": [ | ||||
89 | "dcterms:title", | ||||
90 | "dcterms:accessRights", | ||||
91 | "dcterms:creator", | ||||
92 | "dcterms:description", | ||||
93 | "dcterms:issued", | ||||
94 | "dcterms:language", | ||||
95 | "dcterms:identifier", | ||||
96 | "dcat:theme", | ||||
97 | "dcterms:type", | ||||
98 | "dcat:keyword", | ||||
99 | "dcat:landingPage", | ||||
100 | "dcterms:hasVersion", | ||||
101 | "dcterms:format", | ||||
102 | "mls:task", | ||||
103 | "datacite:isDescribedBy" | ||||
104 | ], | ||||
105 | "description": "The json representation of the dataset with its | ||||
106 | distributions based on DCAT.", | ||||
107 | "format": "JSON", | ||||
108 | "hash": "", | ||||
109 | "id": "856af511-ce5b-48c4-9251-09691677d3c6", | ||||
110 | "last_modified": "2024-12-17T08:24:15.527624", | ||||
111 | "metadata_modified": "2024-12-17T08:24:15.538480", | ||||
112 | "mimetype": "application/json", | ||||
113 | "mimetype_inner": null, | ||||
114 | "name": "Original Metadata", | ||||
115 | "package_id": "93a976b9-b48d-459d-a341-b9cdf49adb64", | ||||
116 | "position": 0, | ||||
117 | "resource_type": null, | ||||
118 | "size": 902, | ||||
119 | "state": "active", | ||||
120 | "url": | ||||
121 | resource/856af511-ce5b-48c4-9251-09691677d3c6/download/metadata.json", | ||||
122 | "url_type": "upload" | ||||
123 | } | ||||
124 | ], | ||||
84 | "services_used_list": "", | 125 | "services_used_list": "", | ||
85 | "state": "active", | 126 | "state": "active", | ||
86 | "tags": [ | 127 | "tags": [ | ||
87 | { | 128 | { | ||
88 | "display_name": "Adult Dataset", | 129 | "display_name": "Adult Dataset", | ||
89 | "id": "059d60a8-19fa-4b25-ba7b-8fff89637dc2", | 130 | "id": "059d60a8-19fa-4b25-ba7b-8fff89637dc2", | ||
90 | "name": "Adult Dataset", | 131 | "name": "Adult Dataset", | ||
91 | "state": "active", | 132 | "state": "active", | ||
92 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
93 | }, | 134 | }, | ||
94 | { | 135 | { | ||
95 | "display_name": "Credit Dataset", | 136 | "display_name": "Credit Dataset", | ||
96 | "id": "4a18d482-137d-4d40-9440-bd8642ee8a77", | 137 | "id": "4a18d482-137d-4d40-9440-bd8642ee8a77", | ||
97 | "name": "Credit Dataset", | 138 | "name": "Credit Dataset", | ||
98 | "state": "active", | 139 | "state": "active", | ||
99 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
100 | }, | 141 | }, | ||
101 | { | 142 | { | ||
102 | "display_name": "Fairness", | 143 | "display_name": "Fairness", | ||
103 | "id": "c12521f8-dc9c-4a84-9bd5-5dae7ab1c705", | 144 | "id": "c12521f8-dc9c-4a84-9bd5-5dae7ab1c705", | ||
104 | "name": "Fairness", | 145 | "name": "Fairness", | ||
105 | "state": "active", | 146 | "state": "active", | ||
106 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
107 | }, | 148 | }, | ||
108 | { | 149 | { | ||
109 | "display_name": "Multi-Label Classification", | 150 | "display_name": "Multi-Label Classification", | ||
110 | "id": "65a87ec1-a7ee-4e32-bd56-df63df24a66a", | 151 | "id": "65a87ec1-a7ee-4e32-bd56-df63df24a66a", | ||
111 | "name": "Multi-Label Classification", | 152 | "name": "Multi-Label Classification", | ||
112 | "state": "active", | 153 | "state": "active", | ||
113 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
114 | } | 155 | } | ||
115 | ], | 156 | ], | ||
116 | "title": "SimFair: A Uni\ufb01ed Framework for Fairness-Aware | 157 | "title": "SimFair: A Uni\ufb01ed Framework for Fairness-Aware | ||
117 | Multi-Label Classi\ufb01cation", | 158 | Multi-Label Classi\ufb01cation", | ||
118 | "type": "dataset", | 159 | "type": "dataset", | ||
119 | "version": "" | 160 | "version": "" | ||
120 | } | 161 | } |