Changes
On December 2, 2024 at 11:40:29 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in U-Transformer: Self and Cross Attention for Medical Image Segmentation -
Changed value of field
doi_date_published
to2024-12-02
in U-Transformer: Self and Cross Attention for Medical Image Segmentation -
Added resource Original Metadata to U-Transformer: Self and Cross Attention for Medical Image Segmentation
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Olivier Petit", | 3 | "author": "Olivier Petit", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/tvx6n55z", | 8 | "doi": "10.57702/tvx6n55z", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Nicolas Thome", | 15 | "extra_author": "Nicolas Thome", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Clement Rambour", | 19 | "extra_author": "Clement Rambour", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Luc Soler", | 23 | "extra_author": "Luc Soler", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | } | 25 | } | ||
26 | ], | 26 | ], | ||
27 | "groups": [ | 27 | "groups": [ | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Medical Image Segmentation", | 30 | "display_name": "Medical Image Segmentation", | ||
31 | "id": "30b6f278-a6f5-4a21-8a07-80737406cc87", | 31 | "id": "30b6f278-a6f5-4a21-8a07-80737406cc87", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "medical-image-segmentation", | 33 | "name": "medical-image-segmentation", | ||
34 | "title": "Medical Image Segmentation" | 34 | "title": "Medical Image Segmentation" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "id": "a05231a3-a58a-4883-91b8-065f18c1c34c", | 37 | "id": "a05231a3-a58a-4883-91b8-065f18c1c34c", | ||
38 | "isopen": false, | 38 | "isopen": false, | ||
39 | "landing_page": "", | 39 | "landing_page": "", | ||
40 | "license_title": null, | 40 | "license_title": null, | ||
41 | "link_orkg": "", | 41 | "link_orkg": "", | ||
42 | "metadata_created": "2024-12-02T23:40:27.600428", | 42 | "metadata_created": "2024-12-02T23:40:27.600428", | ||
n | 43 | "metadata_modified": "2024-12-02T23:40:27.600433", | n | 43 | "metadata_modified": "2024-12-02T23:40:28.204475", |
44 | "name": | 44 | "name": | ||
45 | transformer--self-and-cross-attention-for-medical-image-segmentation", | 45 | transformer--self-and-cross-attention-for-medical-image-segmentation", | ||
46 | "notes": "Medical image segmentation remains particularly | 46 | "notes": "Medical image segmentation remains particularly | ||
47 | challenging for complex and low-contrast anatomical structures. In | 47 | challenging for complex and low-contrast anatomical structures. In | ||
48 | this paper, we introduce the U-Transformer network, which combines a | 48 | this paper, we introduce the U-Transformer network, which combines a | ||
49 | U-shaped architecture for image segmentation with self- and | 49 | U-shaped architecture for image segmentation with self- and | ||
50 | cross-attention from Transformers.", | 50 | cross-attention from Transformers.", | ||
n | 51 | "num_resources": 0, | n | 51 | "num_resources": 1, |
52 | "num_tags": 4, | 52 | "num_tags": 4, | ||
53 | "organization": { | 53 | "organization": { | ||
54 | "approval_status": "approved", | 54 | "approval_status": "approved", | ||
55 | "created": "2024-11-25T12:11:38.292601", | 55 | "created": "2024-11-25T12:11:38.292601", | ||
56 | "description": "", | 56 | "description": "", | ||
57 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 57 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
58 | "image_url": "", | 58 | "image_url": "", | ||
59 | "is_organization": true, | 59 | "is_organization": true, | ||
60 | "name": "no-organization", | 60 | "name": "no-organization", | ||
61 | "state": "active", | 61 | "state": "active", | ||
62 | "title": "No Organization", | 62 | "title": "No Organization", | ||
63 | "type": "organization" | 63 | "type": "organization" | ||
64 | }, | 64 | }, | ||
65 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 65 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
66 | "private": false, | 66 | "private": false, | ||
67 | "relationships_as_object": [], | 67 | "relationships_as_object": [], | ||
68 | "relationships_as_subject": [], | 68 | "relationships_as_subject": [], | ||
t | 69 | "resources": [], | t | 69 | "resources": [ |
70 | { | ||||
71 | "cache_last_updated": null, | ||||
72 | "cache_url": null, | ||||
73 | "created": "2024-12-03T00:20:35", | ||||
74 | "data": [ | ||||
75 | "dcterms:title", | ||||
76 | "dcterms:accessRights", | ||||
77 | "dcterms:creator", | ||||
78 | "dcterms:description", | ||||
79 | "dcterms:issued", | ||||
80 | "dcterms:language", | ||||
81 | "dcterms:identifier", | ||||
82 | "dcat:theme", | ||||
83 | "dcterms:type", | ||||
84 | "dcat:keyword", | ||||
85 | "dcat:landingPage", | ||||
86 | "dcterms:hasVersion", | ||||
87 | "dcterms:format", | ||||
88 | "mls:task" | ||||
89 | ], | ||||
90 | "description": "The json representation of the dataset with its | ||||
91 | distributions based on DCAT.", | ||||
92 | "format": "JSON", | ||||
93 | "hash": "", | ||||
94 | "id": "505dc970-ea24-44da-af5a-64ab3da96aca", | ||||
95 | "last_modified": "2024-12-02T23:40:28.196915", | ||||
96 | "metadata_modified": "2024-12-02T23:40:28.207285", | ||||
97 | "mimetype": "application/json", | ||||
98 | "mimetype_inner": null, | ||||
99 | "name": "Original Metadata", | ||||
100 | "package_id": "a05231a3-a58a-4883-91b8-065f18c1c34c", | ||||
101 | "position": 0, | ||||
102 | "resource_type": null, | ||||
103 | "size": 890, | ||||
104 | "state": "active", | ||||
105 | "url": | ||||
106 | resource/505dc970-ea24-44da-af5a-64ab3da96aca/download/metadata.json", | ||||
107 | "url_type": "upload" | ||||
108 | } | ||||
109 | ], | ||||
70 | "services_used_list": "", | 110 | "services_used_list": "", | ||
71 | "state": "active", | 111 | "state": "active", | ||
72 | "tags": [ | 112 | "tags": [ | ||
73 | { | 113 | { | ||
74 | "display_name": "Cross-attention", | 114 | "display_name": "Cross-attention", | ||
75 | "id": "8301926a-1686-4c51-8aa8-c77f3154da32", | 115 | "id": "8301926a-1686-4c51-8aa8-c77f3154da32", | ||
76 | "name": "Cross-attention", | 116 | "name": "Cross-attention", | ||
77 | "state": "active", | 117 | "state": "active", | ||
78 | "vocabulary_id": null | 118 | "vocabulary_id": null | ||
79 | }, | 119 | }, | ||
80 | { | 120 | { | ||
81 | "display_name": "Medical Image Segmentation", | 121 | "display_name": "Medical Image Segmentation", | ||
82 | "id": "a90cdc4c-84c9-4603-8c0e-8e18a0ff936f", | 122 | "id": "a90cdc4c-84c9-4603-8c0e-8e18a0ff936f", | ||
83 | "name": "Medical Image Segmentation", | 123 | "name": "Medical Image Segmentation", | ||
84 | "state": "active", | 124 | "state": "active", | ||
85 | "vocabulary_id": null | 125 | "vocabulary_id": null | ||
86 | }, | 126 | }, | ||
87 | { | 127 | { | ||
88 | "display_name": "Self-attention", | 128 | "display_name": "Self-attention", | ||
89 | "id": "10ca5179-4e85-431f-9f90-96cfa352c273", | 129 | "id": "10ca5179-4e85-431f-9f90-96cfa352c273", | ||
90 | "name": "Self-attention", | 130 | "name": "Self-attention", | ||
91 | "state": "active", | 131 | "state": "active", | ||
92 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
93 | }, | 133 | }, | ||
94 | { | 134 | { | ||
95 | "display_name": "Transformers", | 135 | "display_name": "Transformers", | ||
96 | "id": "cf7e206b-e529-4427-a72d-4a7b2db4554c", | 136 | "id": "cf7e206b-e529-4427-a72d-4a7b2db4554c", | ||
97 | "name": "Transformers", | 137 | "name": "Transformers", | ||
98 | "state": "active", | 138 | "state": "active", | ||
99 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
100 | } | 140 | } | ||
101 | ], | 141 | ], | ||
102 | "title": "U-Transformer: Self and Cross Attention for Medical Image | 142 | "title": "U-Transformer: Self and Cross Attention for Medical Image | ||
103 | Segmentation", | 143 | Segmentation", | ||
104 | "type": "dataset", | 144 | "type": "dataset", | ||
105 | "version": "" | 145 | "version": "" | ||
106 | } | 146 | } |