Changes
On December 3, 2024 at 10:35:34 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in A Bayesian Non-parametric Approach to Generative Models -
Changed value of field
doi_date_published
to2024-12-03
in A Bayesian Non-parametric Approach to Generative Models -
Added resource Original Metadata to A Bayesian Non-parametric Approach to Generative Models
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Forough Fazeli-Asl", | 3 | "author": "Forough Fazeli-Asl", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2308.14048", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2308.14048", | ||
8 | "doi": "10.57702/9mwo8wow", | 8 | "doi": "10.57702/9mwo8wow", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Michael Minyi Zhang", | 15 | "extra_author": "Michael Minyi Zhang", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Generative Models", | 22 | "display_name": "Generative Models", | ||
23 | "id": "f42cf4b7-7fad-4c96-8a26-ea5d45dca6aa", | 23 | "id": "f42cf4b7-7fad-4c96-8a26-ea5d45dca6aa", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "generative-models", | 25 | "name": "generative-models", | ||
26 | "title": "Generative Models" | 26 | "title": "Generative Models" | ||
27 | } | 27 | } | ||
28 | ], | 28 | ], | ||
29 | "id": "9d860e80-9428-40b0-8185-bcbfdcdc726f", | 29 | "id": "9d860e80-9428-40b0-8185-bcbfdcdc726f", | ||
30 | "isopen": false, | 30 | "isopen": false, | ||
31 | "landing_page": "", | 31 | "landing_page": "", | ||
32 | "license_title": null, | 32 | "license_title": null, | ||
33 | "link_orkg": "", | 33 | "link_orkg": "", | ||
34 | "metadata_created": "2024-12-03T10:35:33.537729", | 34 | "metadata_created": "2024-12-03T10:35:33.537729", | ||
n | 35 | "metadata_modified": "2024-12-03T10:35:33.537735", | n | 35 | "metadata_modified": "2024-12-03T10:35:33.882355", |
36 | "name": "a-bayesian-non-parametric-approach-to-generative-models", | 36 | "name": "a-bayesian-non-parametric-approach-to-generative-models", | ||
37 | "notes": "Generative models have emerged as a promising technique | 37 | "notes": "Generative models have emerged as a promising technique | ||
38 | for producing high-quality im-ages that are indistinguishable from | 38 | for producing high-quality im-ages that are indistinguishable from | ||
39 | real images.", | 39 | real images.", | ||
n | 40 | "num_resources": 0, | n | 40 | "num_resources": 1, |
41 | "num_tags": 2, | 41 | "num_tags": 2, | ||
42 | "organization": { | 42 | "organization": { | ||
43 | "approval_status": "approved", | 43 | "approval_status": "approved", | ||
44 | "created": "2024-11-25T12:11:38.292601", | 44 | "created": "2024-11-25T12:11:38.292601", | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 46 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
47 | "image_url": "", | 47 | "image_url": "", | ||
48 | "is_organization": true, | 48 | "is_organization": true, | ||
49 | "name": "no-organization", | 49 | "name": "no-organization", | ||
50 | "state": "active", | 50 | "state": "active", | ||
51 | "title": "No Organization", | 51 | "title": "No Organization", | ||
52 | "type": "organization" | 52 | "type": "organization" | ||
53 | }, | 53 | }, | ||
54 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 54 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
55 | "private": false, | 55 | "private": false, | ||
56 | "relationships_as_object": [], | 56 | "relationships_as_object": [], | ||
57 | "relationships_as_subject": [], | 57 | "relationships_as_subject": [], | ||
t | 58 | "resources": [], | t | 58 | "resources": [ |
59 | { | ||||
60 | "cache_last_updated": null, | ||||
61 | "cache_url": null, | ||||
62 | "created": "2024-12-03T11:31:03", | ||||
63 | "data": [ | ||||
64 | "dcterms:title", | ||||
65 | "dcterms:accessRights", | ||||
66 | "dcterms:creator", | ||||
67 | "dcterms:description", | ||||
68 | "dcterms:issued", | ||||
69 | "dcterms:language", | ||||
70 | "dcterms:identifier", | ||||
71 | "dcat:theme", | ||||
72 | "dcterms:type", | ||||
73 | "dcat:keyword", | ||||
74 | "dcat:landingPage", | ||||
75 | "dcterms:hasVersion", | ||||
76 | "dcterms:format", | ||||
77 | "mls:task", | ||||
78 | "datacite:isDescribedBy" | ||||
79 | ], | ||||
80 | "description": "The json representation of the dataset with its | ||||
81 | distributions based on DCAT.", | ||||
82 | "format": "JSON", | ||||
83 | "hash": "", | ||||
84 | "id": "5e3646c5-d2fb-40ce-903f-2148eb080554", | ||||
85 | "last_modified": "2024-12-03T10:35:33.874323", | ||||
86 | "metadata_modified": "2024-12-03T10:35:33.885417", | ||||
87 | "mimetype": "application/json", | ||||
88 | "mimetype_inner": null, | ||||
89 | "name": "Original Metadata", | ||||
90 | "package_id": "9d860e80-9428-40b0-8185-bcbfdcdc726f", | ||||
91 | "position": 0, | ||||
92 | "resource_type": null, | ||||
93 | "size": 724, | ||||
94 | "state": "active", | ||||
95 | "url": | ||||
96 | resource/5e3646c5-d2fb-40ce-903f-2148eb080554/download/metadata.json", | ||||
97 | "url_type": "upload" | ||||
98 | } | ||||
99 | ], | ||||
59 | "services_used_list": "", | 100 | "services_used_list": "", | ||
60 | "state": "active", | 101 | "state": "active", | ||
61 | "tags": [ | 102 | "tags": [ | ||
62 | { | 103 | { | ||
63 | "display_name": "Generative Adversarial Networks", | 104 | "display_name": "Generative Adversarial Networks", | ||
64 | "id": "b384af43-f86b-489d-a8d4-9595f25d6e95", | 105 | "id": "b384af43-f86b-489d-a8d4-9595f25d6e95", | ||
65 | "name": "Generative Adversarial Networks", | 106 | "name": "Generative Adversarial Networks", | ||
66 | "state": "active", | 107 | "state": "active", | ||
67 | "vocabulary_id": null | 108 | "vocabulary_id": null | ||
68 | }, | 109 | }, | ||
69 | { | 110 | { | ||
70 | "display_name": "Variational Autoencoders", | 111 | "display_name": "Variational Autoencoders", | ||
71 | "id": "971a62a2-3ca1-47bb-8737-4b4f4cef03ff", | 112 | "id": "971a62a2-3ca1-47bb-8737-4b4f4cef03ff", | ||
72 | "name": "Variational Autoencoders", | 113 | "name": "Variational Autoencoders", | ||
73 | "state": "active", | 114 | "state": "active", | ||
74 | "vocabulary_id": null | 115 | "vocabulary_id": null | ||
75 | } | 116 | } | ||
76 | ], | 117 | ], | ||
77 | "title": "A Bayesian Non-parametric Approach to Generative Models", | 118 | "title": "A Bayesian Non-parametric Approach to Generative Models", | ||
78 | "type": "dataset", | 119 | "type": "dataset", | ||
79 | "version": "" | 120 | "version": "" | ||
80 | } | 121 | } |