Changes
On December 3, 2024 at 10:24:13 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in MICCAI 2015 Gland Segmentation dataset (GlaS) -
Changed value of field
doi_date_published
to2024-12-03
in MICCAI 2015 Gland Segmentation dataset (GlaS) -
Added resource Original Metadata to MICCAI 2015 Gland Segmentation dataset (GlaS)
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Jiawei Zhang", | 3 | "author": "Jiawei Zhang", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/zvhkbck7", | 8 | "doi": "10.57702/zvhkbck7", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Yuzhen Jin", | 15 | "extra_author": "Yuzhen Jin", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Jilan Xu", | 19 | "extra_author": "Jilan Xu", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Xiaowei Xu", | 23 | "extra_author": "Xiaowei Xu", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Yanchun Zhang", | 27 | "extra_author": "Yanchun Zhang", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [ | 31 | "groups": [ | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Biomedical Image Segmentation", | 34 | "display_name": "Biomedical Image Segmentation", | ||
35 | "id": "09ae5e38-e0ad-48e4-841c-365cec85a9d3", | 35 | "id": "09ae5e38-e0ad-48e4-841c-365cec85a9d3", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "biomedical-image-segmentation", | 37 | "name": "biomedical-image-segmentation", | ||
38 | "title": "Biomedical Image Segmentation" | 38 | "title": "Biomedical Image Segmentation" | ||
39 | } | 39 | } | ||
40 | ], | 40 | ], | ||
41 | "id": "c927884f-52ad-434d-96cd-d681723a4f57", | 41 | "id": "c927884f-52ad-434d-96cd-d681723a4f57", | ||
42 | "isopen": false, | 42 | "isopen": false, | ||
43 | "landing_page": "https://www.miccai.org/Workshops/WS2015/GlaS", | 43 | "landing_page": "https://www.miccai.org/Workshops/WS2015/GlaS", | ||
44 | "license_title": null, | 44 | "license_title": null, | ||
45 | "link_orkg": "", | 45 | "link_orkg": "", | ||
46 | "metadata_created": "2024-12-03T10:24:11.843341", | 46 | "metadata_created": "2024-12-03T10:24:11.843341", | ||
n | 47 | "metadata_modified": "2024-12-03T10:24:11.843346", | n | 47 | "metadata_modified": "2024-12-03T10:24:12.307208", |
48 | "name": "miccai-2015-gland-segmentation-dataset--glas-", | 48 | "name": "miccai-2015-gland-segmentation-dataset--glas-", | ||
49 | "notes": "The MICCAI 2015 Gland Segmentation dataset (GlaS) is a | 49 | "notes": "The MICCAI 2015 Gland Segmentation dataset (GlaS) is a | ||
50 | biomedical image dataset used for evaluating the performance of image | 50 | biomedical image dataset used for evaluating the performance of image | ||
51 | segmentation algorithms.", | 51 | segmentation algorithms.", | ||
n | 52 | "num_resources": 0, | n | 52 | "num_resources": 1, |
53 | "num_tags": 3, | 53 | "num_tags": 3, | ||
54 | "organization": { | 54 | "organization": { | ||
55 | "approval_status": "approved", | 55 | "approval_status": "approved", | ||
56 | "created": "2024-11-25T12:11:38.292601", | 56 | "created": "2024-11-25T12:11:38.292601", | ||
57 | "description": "", | 57 | "description": "", | ||
58 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 58 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
59 | "image_url": "", | 59 | "image_url": "", | ||
60 | "is_organization": true, | 60 | "is_organization": true, | ||
61 | "name": "no-organization", | 61 | "name": "no-organization", | ||
62 | "state": "active", | 62 | "state": "active", | ||
63 | "title": "No Organization", | 63 | "title": "No Organization", | ||
64 | "type": "organization" | 64 | "type": "organization" | ||
65 | }, | 65 | }, | ||
66 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 66 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
67 | "private": false, | 67 | "private": false, | ||
68 | "relationships_as_object": [], | 68 | "relationships_as_object": [], | ||
69 | "relationships_as_subject": [], | 69 | "relationships_as_subject": [], | ||
t | 70 | "resources": [], | t | 70 | "resources": [ |
71 | { | ||||
72 | "cache_last_updated": null, | ||||
73 | "cache_url": null, | ||||
74 | "created": "2024-12-03T11:11:17", | ||||
75 | "data": [ | ||||
76 | "dcterms:title", | ||||
77 | "dcterms:accessRights", | ||||
78 | "dcterms:creator", | ||||
79 | "dcterms:description", | ||||
80 | "dcterms:issued", | ||||
81 | "dcterms:language", | ||||
82 | "dcterms:identifier", | ||||
83 | "dcat:theme", | ||||
84 | "dcterms:type", | ||||
85 | "dcat:keyword", | ||||
86 | "dcat:landingPage", | ||||
87 | "dcterms:hasVersion", | ||||
88 | "dcterms:format", | ||||
89 | "mls:task" | ||||
90 | ], | ||||
91 | "description": "The json representation of the dataset with its | ||||
92 | distributions based on DCAT.", | ||||
93 | "format": "JSON", | ||||
94 | "hash": "", | ||||
95 | "id": "9eb5b7e4-3e67-4bcc-bf26-04344bbb2956", | ||||
96 | "last_modified": "2024-12-03T10:24:12.299679", | ||||
97 | "metadata_modified": "2024-12-03T10:24:12.310095", | ||||
98 | "mimetype": "application/json", | ||||
99 | "mimetype_inner": null, | ||||
100 | "name": "Original Metadata", | ||||
101 | "package_id": "c927884f-52ad-434d-96cd-d681723a4f57", | ||||
102 | "position": 0, | ||||
103 | "resource_type": null, | ||||
104 | "size": 825, | ||||
105 | "state": "active", | ||||
106 | "url": | ||||
107 | resource/9eb5b7e4-3e67-4bcc-bf26-04344bbb2956/download/metadata.json", | ||||
108 | "url_type": "upload" | ||||
109 | } | ||||
110 | ], | ||||
71 | "services_used_list": "", | 111 | "services_used_list": "", | ||
72 | "state": "active", | 112 | "state": "active", | ||
73 | "tags": [ | 113 | "tags": [ | ||
74 | { | 114 | { | ||
75 | "display_name": "Biomedical Image Segmentation", | 115 | "display_name": "Biomedical Image Segmentation", | ||
76 | "id": "02f491e6-77c4-4661-acbf-54f503c9b68b", | 116 | "id": "02f491e6-77c4-4661-acbf-54f503c9b68b", | ||
77 | "name": "Biomedical Image Segmentation", | 117 | "name": "Biomedical Image Segmentation", | ||
78 | "state": "active", | 118 | "state": "active", | ||
79 | "vocabulary_id": null | 119 | "vocabulary_id": null | ||
80 | }, | 120 | }, | ||
81 | { | 121 | { | ||
82 | "display_name": "Gland Segmentation", | 122 | "display_name": "Gland Segmentation", | ||
83 | "id": "dcea8407-a16c-466f-a8f0-6b654fe04a3b", | 123 | "id": "dcea8407-a16c-466f-a8f0-6b654fe04a3b", | ||
84 | "name": "Gland Segmentation", | 124 | "name": "Gland Segmentation", | ||
85 | "state": "active", | 125 | "state": "active", | ||
86 | "vocabulary_id": null | 126 | "vocabulary_id": null | ||
87 | }, | 127 | }, | ||
88 | { | 128 | { | ||
89 | "display_name": "MICCAI 2015", | 129 | "display_name": "MICCAI 2015", | ||
90 | "id": "65226347-176d-4a81-9acc-708f8bb8b504", | 130 | "id": "65226347-176d-4a81-9acc-708f8bb8b504", | ||
91 | "name": "MICCAI 2015", | 131 | "name": "MICCAI 2015", | ||
92 | "state": "active", | 132 | "state": "active", | ||
93 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
94 | } | 134 | } | ||
95 | ], | 135 | ], | ||
96 | "title": "MICCAI 2015 Gland Segmentation dataset (GlaS)", | 136 | "title": "MICCAI 2015 Gland Segmentation dataset (GlaS)", | ||
97 | "type": "dataset", | 137 | "type": "dataset", | ||
98 | "version": "" | 138 | "version": "" | ||
99 | } | 139 | } |