Changes
On December 16, 2024 at 8:44:59 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in A Ray-tracing and Deep Learning Fusion Super-resolution Modeling Method for Wireless Mobile Channel -
Changed value of field
doi_date_published
to2024-12-16
in A Ray-tracing and Deep Learning Fusion Super-resolution Modeling Method for Wireless Mobile Channel -
Added resource Original Metadata to A Ray-tracing and Deep Learning Fusion Super-resolution Modeling Method for Wireless Mobile Channel
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Zhao Zhang", | 3 | "author": "Zhao Zhang", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2301.11557", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2301.11557", | ||
8 | "doi": "10.57702/dufvwa1d", | 8 | "doi": "10.57702/dufvwa1d", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Danping He", | 15 | "extra_author": "Danping He", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Xiping Wang", | 19 | "extra_author": "Xiping Wang", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Ke Guan", | 23 | "extra_author": "Ke Guan", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Zhangdui Zhong", | 27 | "extra_author": "Zhangdui Zhong", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Jianwu Dou", | 31 | "extra_author": "Jianwu Dou", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Deep Learning", | 38 | "display_name": "Deep Learning", | ||
39 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | 39 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "deep-learning", | 41 | "name": "deep-learning", | ||
42 | "title": "Deep Learning" | 42 | "title": "Deep Learning" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Mobile Channel Modeling", | 46 | "display_name": "Mobile Channel Modeling", | ||
47 | "id": "a6abdb37-972e-4301-a7cf-19e5b6c416fb", | 47 | "id": "a6abdb37-972e-4301-a7cf-19e5b6c416fb", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "mobile-channel-modeling", | 49 | "name": "mobile-channel-modeling", | ||
50 | "title": "Mobile Channel Modeling" | 50 | "title": "Mobile Channel Modeling" | ||
51 | }, | 51 | }, | ||
52 | { | 52 | { | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "display_name": "Ray Tracing", | 54 | "display_name": "Ray Tracing", | ||
55 | "id": "92803e76-c6e8-4060-94c2-2c94195a46bf", | 55 | "id": "92803e76-c6e8-4060-94c2-2c94195a46bf", | ||
56 | "image_display_url": "", | 56 | "image_display_url": "", | ||
57 | "name": "ray-tracing", | 57 | "name": "ray-tracing", | ||
58 | "title": "Ray Tracing" | 58 | "title": "Ray Tracing" | ||
59 | }, | 59 | }, | ||
60 | { | 60 | { | ||
61 | "description": "", | 61 | "description": "", | ||
62 | "display_name": "Super Resolution", | 62 | "display_name": "Super Resolution", | ||
63 | "id": "88fad46a-2463-4346-85f0-4fe8edf4614e", | 63 | "id": "88fad46a-2463-4346-85f0-4fe8edf4614e", | ||
64 | "image_display_url": "", | 64 | "image_display_url": "", | ||
65 | "name": "super-resolution", | 65 | "name": "super-resolution", | ||
66 | "title": "Super Resolution" | 66 | "title": "Super Resolution" | ||
67 | } | 67 | } | ||
68 | ], | 68 | ], | ||
69 | "id": "e9d4ba26-1381-423b-98b2-519bece12845", | 69 | "id": "e9d4ba26-1381-423b-98b2-519bece12845", | ||
70 | "isopen": false, | 70 | "isopen": false, | ||
71 | "landing_page": "", | 71 | "landing_page": "", | ||
72 | "license_title": null, | 72 | "license_title": null, | ||
73 | "link_orkg": "", | 73 | "link_orkg": "", | ||
74 | "metadata_created": "2024-12-16T20:44:57.699750", | 74 | "metadata_created": "2024-12-16T20:44:57.699750", | ||
n | 75 | "metadata_modified": "2024-12-16T20:44:57.699757", | n | 75 | "metadata_modified": "2024-12-16T20:44:58.183391", |
76 | "name": | 76 | "name": | ||
77 | -fusion-super-resolution-modeling-method-for-wireless-mobile-channel", | 77 | -fusion-super-resolution-modeling-method-for-wireless-mobile-channel", | ||
78 | "notes": "A dataset for wireless mobile channel modeling, including | 78 | "notes": "A dataset for wireless mobile channel modeling, including | ||
79 | ray tracing and deep learning fusion super-resolution modeling method | 79 | ray tracing and deep learning fusion super-resolution modeling method | ||
80 | for cluster characteristics prediction.", | 80 | for cluster characteristics prediction.", | ||
n | 81 | "num_resources": 0, | n | 81 | "num_resources": 1, |
82 | "num_tags": 5, | 82 | "num_tags": 5, | ||
83 | "organization": { | 83 | "organization": { | ||
84 | "approval_status": "approved", | 84 | "approval_status": "approved", | ||
85 | "created": "2024-11-25T12:11:38.292601", | 85 | "created": "2024-11-25T12:11:38.292601", | ||
86 | "description": "", | 86 | "description": "", | ||
87 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 87 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
88 | "image_url": "", | 88 | "image_url": "", | ||
89 | "is_organization": true, | 89 | "is_organization": true, | ||
90 | "name": "no-organization", | 90 | "name": "no-organization", | ||
91 | "state": "active", | 91 | "state": "active", | ||
92 | "title": "No Organization", | 92 | "title": "No Organization", | ||
93 | "type": "organization" | 93 | "type": "organization" | ||
94 | }, | 94 | }, | ||
95 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 95 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
96 | "private": false, | 96 | "private": false, | ||
97 | "relationships_as_object": [], | 97 | "relationships_as_object": [], | ||
98 | "relationships_as_subject": [], | 98 | "relationships_as_subject": [], | ||
t | 99 | "resources": [], | t | 99 | "resources": [ |
100 | { | ||||
101 | "cache_last_updated": null, | ||||
102 | "cache_url": null, | ||||
103 | "created": "2024-12-16T18:25:46", | ||||
104 | "data": [ | ||||
105 | "dcterms:title", | ||||
106 | "dcterms:accessRights", | ||||
107 | "dcterms:creator", | ||||
108 | "dcterms:description", | ||||
109 | "dcterms:issued", | ||||
110 | "dcterms:language", | ||||
111 | "dcterms:identifier", | ||||
112 | "dcat:theme", | ||||
113 | "dcterms:type", | ||||
114 | "dcat:keyword", | ||||
115 | "dcat:landingPage", | ||||
116 | "dcterms:hasVersion", | ||||
117 | "dcterms:format", | ||||
118 | "mls:task", | ||||
119 | "datacite:isDescribedBy" | ||||
120 | ], | ||||
121 | "description": "The json representation of the dataset with its | ||||
122 | distributions based on DCAT.", | ||||
123 | "format": "JSON", | ||||
124 | "hash": "", | ||||
125 | "id": "3772f164-7f4c-4ddc-a606-f4bc6245e1ce", | ||||
126 | "last_modified": "2024-12-16T20:44:58.175459", | ||||
127 | "metadata_modified": "2024-12-16T20:44:58.186392", | ||||
128 | "mimetype": "application/json", | ||||
129 | "mimetype_inner": null, | ||||
130 | "name": "Original Metadata", | ||||
131 | "package_id": "e9d4ba26-1381-423b-98b2-519bece12845", | ||||
132 | "position": 0, | ||||
133 | "resource_type": null, | ||||
134 | "size": 974, | ||||
135 | "state": "active", | ||||
136 | "url": | ||||
137 | resource/3772f164-7f4c-4ddc-a606-f4bc6245e1ce/download/metadata.json", | ||||
138 | "url_type": "upload" | ||||
139 | } | ||||
140 | ], | ||||
100 | "services_used_list": "", | 141 | "services_used_list": "", | ||
101 | "state": "active", | 142 | "state": "active", | ||
102 | "tags": [ | 143 | "tags": [ | ||
103 | { | 144 | { | ||
104 | "display_name": "cluster characteristics", | 145 | "display_name": "cluster characteristics", | ||
105 | "id": "ce9d78a8-0df5-4fbc-a516-70923ed548e0", | 146 | "id": "ce9d78a8-0df5-4fbc-a516-70923ed548e0", | ||
106 | "name": "cluster characteristics", | 147 | "name": "cluster characteristics", | ||
107 | "state": "active", | 148 | "state": "active", | ||
108 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
109 | }, | 150 | }, | ||
110 | { | 151 | { | ||
111 | "display_name": "deep learning", | 152 | "display_name": "deep learning", | ||
112 | "id": "19e41883-3799-4184-9e0e-26c95795b119", | 153 | "id": "19e41883-3799-4184-9e0e-26c95795b119", | ||
113 | "name": "deep learning", | 154 | "name": "deep learning", | ||
114 | "state": "active", | 155 | "state": "active", | ||
115 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
116 | }, | 157 | }, | ||
117 | { | 158 | { | ||
118 | "display_name": "ray tracing", | 159 | "display_name": "ray tracing", | ||
119 | "id": "240e8af8-fdc4-4551-8d68-2e0b3855cea0", | 160 | "id": "240e8af8-fdc4-4551-8d68-2e0b3855cea0", | ||
120 | "name": "ray tracing", | 161 | "name": "ray tracing", | ||
121 | "state": "active", | 162 | "state": "active", | ||
122 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
123 | }, | 164 | }, | ||
124 | { | 165 | { | ||
125 | "display_name": "super-resolution", | 166 | "display_name": "super-resolution", | ||
126 | "id": "7e3d894a-1643-485f-ac0c-9065c5a2fad9", | 167 | "id": "7e3d894a-1643-485f-ac0c-9065c5a2fad9", | ||
127 | "name": "super-resolution", | 168 | "name": "super-resolution", | ||
128 | "state": "active", | 169 | "state": "active", | ||
129 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
130 | }, | 171 | }, | ||
131 | { | 172 | { | ||
132 | "display_name": "wireless mobile channel", | 173 | "display_name": "wireless mobile channel", | ||
133 | "id": "a1c92b0e-c416-414e-a5be-acb911fd87b4", | 174 | "id": "a1c92b0e-c416-414e-a5be-acb911fd87b4", | ||
134 | "name": "wireless mobile channel", | 175 | "name": "wireless mobile channel", | ||
135 | "state": "active", | 176 | "state": "active", | ||
136 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
137 | } | 178 | } | ||
138 | ], | 179 | ], | ||
139 | "title": "A Ray-tracing and Deep Learning Fusion Super-resolution | 180 | "title": "A Ray-tracing and Deep Learning Fusion Super-resolution | ||
140 | Modeling Method for Wireless Mobile Channel", | 181 | Modeling Method for Wireless Mobile Channel", | ||
141 | "type": "dataset", | 182 | "type": "dataset", | ||
142 | "version": "" | 183 | "version": "" | ||
143 | } | 184 | } |