Changes
On December 16, 2024 at 5:36:02 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Conditional Wasserstein GAN-based Oversampling of Tabular Data for Imbalanced Learning -
Changed value of field
doi_date_published
to2024-12-16
in Conditional Wasserstein GAN-based Oversampling of Tabular Data for Imbalanced Learning -
Added resource Original Metadata to Conditional Wasserstein GAN-based Oversampling of Tabular Data for Imbalanced Learning
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Justin Engelmann", | 3 | "author": "Justin Engelmann", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/rr0z5let", | 8 | "doi": "10.57702/rr0z5let", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Stefan Lessmann", | 15 | "extra_author": "Stefan Lessmann", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Credit Scoring", | 22 | "display_name": "Credit Scoring", | ||
23 | "id": "31e9e2ab-b604-45f7-b885-f0c8688fb5de", | 23 | "id": "31e9e2ab-b604-45f7-b885-f0c8688fb5de", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "credit-scoring", | 25 | "name": "credit-scoring", | ||
26 | "title": "Credit Scoring" | 26 | "title": "Credit Scoring" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Imbalanced Learning", | 30 | "display_name": "Imbalanced Learning", | ||
31 | "id": "ea030744-5fd4-44f8-befb-cf557d7d3095", | 31 | "id": "ea030744-5fd4-44f8-befb-cf557d7d3095", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "imbalanced-learning", | 33 | "name": "imbalanced-learning", | ||
34 | "title": "Imbalanced Learning" | 34 | "title": "Imbalanced Learning" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Tabular data", | 38 | "display_name": "Tabular data", | ||
39 | "id": "1abdd79b-92f8-4ac7-ad70-6199929c5d60", | 39 | "id": "1abdd79b-92f8-4ac7-ad70-6199929c5d60", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "tabular-data", | 41 | "name": "tabular-data", | ||
42 | "title": "Tabular data" | 42 | "title": "Tabular data" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "id": "1fe3aa26-0bcd-474e-b0a0-5502c287435a", | 45 | "id": "1fe3aa26-0bcd-474e-b0a0-5502c287435a", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "landing_page": "", | 47 | "landing_page": "", | ||
48 | "license_title": null, | 48 | "license_title": null, | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "metadata_created": "2024-12-16T17:36:00.575076", | 50 | "metadata_created": "2024-12-16T17:36:00.575076", | ||
n | 51 | "metadata_modified": "2024-12-16T17:36:00.575081", | n | 51 | "metadata_modified": "2024-12-16T17:36:01.030557", |
52 | "name": | 52 | "name": | ||
53 | stein-gan-based-oversampling-of-tabular-data-for-imbalanced-learning", | 53 | stein-gan-based-oversampling-of-tabular-data-for-imbalanced-learning", | ||
54 | "notes": "The paper considers credit-related decisions in the | 54 | "notes": "The paper considers credit-related decisions in the | ||
55 | financial industry, which heavily relies on ML for decision support. | 55 | financial industry, which heavily relies on ML for decision support. | ||
56 | Class imbalance is a common problem in supervised learning and impedes | 56 | Class imbalance is a common problem in supervised learning and impedes | ||
57 | the predictive performance of classification models. Popular | 57 | the predictive performance of classification models. Popular | ||
58 | countermeasures include oversampling the minority class.", | 58 | countermeasures include oversampling the minority class.", | ||
n | 59 | "num_resources": 0, | n | 59 | "num_resources": 1, |
60 | "num_tags": 3, | 60 | "num_tags": 3, | ||
61 | "organization": { | 61 | "organization": { | ||
62 | "approval_status": "approved", | 62 | "approval_status": "approved", | ||
63 | "created": "2024-11-25T12:11:38.292601", | 63 | "created": "2024-11-25T12:11:38.292601", | ||
64 | "description": "", | 64 | "description": "", | ||
65 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 65 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
66 | "image_url": "", | 66 | "image_url": "", | ||
67 | "is_organization": true, | 67 | "is_organization": true, | ||
68 | "name": "no-organization", | 68 | "name": "no-organization", | ||
69 | "state": "active", | 69 | "state": "active", | ||
70 | "title": "No Organization", | 70 | "title": "No Organization", | ||
71 | "type": "organization" | 71 | "type": "organization" | ||
72 | }, | 72 | }, | ||
73 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 73 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
74 | "private": false, | 74 | "private": false, | ||
75 | "relationships_as_object": [], | 75 | "relationships_as_object": [], | ||
76 | "relationships_as_subject": [], | 76 | "relationships_as_subject": [], | ||
t | 77 | "resources": [], | t | 77 | "resources": [ |
78 | { | ||||
79 | "cache_last_updated": null, | ||||
80 | "cache_url": null, | ||||
81 | "created": "2024-12-16T18:25:29", | ||||
82 | "data": [ | ||||
83 | "dcterms:title", | ||||
84 | "dcterms:accessRights", | ||||
85 | "dcterms:creator", | ||||
86 | "dcterms:description", | ||||
87 | "dcterms:issued", | ||||
88 | "dcterms:language", | ||||
89 | "dcterms:identifier", | ||||
90 | "dcat:theme", | ||||
91 | "dcterms:type", | ||||
92 | "dcat:keyword", | ||||
93 | "dcat:landingPage", | ||||
94 | "dcterms:hasVersion", | ||||
95 | "dcterms:format", | ||||
96 | "mls:task" | ||||
97 | ], | ||||
98 | "description": "The json representation of the dataset with its | ||||
99 | distributions based on DCAT.", | ||||
100 | "format": "JSON", | ||||
101 | "hash": "", | ||||
102 | "id": "a9ce424f-b81a-4e81-b093-01927656b4e7", | ||||
103 | "last_modified": "2024-12-16T17:36:01.023415", | ||||
104 | "metadata_modified": "2024-12-16T17:36:01.033469", | ||||
105 | "mimetype": "application/json", | ||||
106 | "mimetype_inner": null, | ||||
107 | "name": "Original Metadata", | ||||
108 | "package_id": "1fe3aa26-0bcd-474e-b0a0-5502c287435a", | ||||
109 | "position": 0, | ||||
110 | "resource_type": null, | ||||
111 | "size": 922, | ||||
112 | "state": "active", | ||||
113 | "url": | ||||
114 | resource/a9ce424f-b81a-4e81-b093-01927656b4e7/download/metadata.json", | ||||
115 | "url_type": "upload" | ||||
116 | } | ||||
117 | ], | ||||
78 | "services_used_list": "", | 118 | "services_used_list": "", | ||
79 | "state": "active", | 119 | "state": "active", | ||
80 | "tags": [ | 120 | "tags": [ | ||
81 | { | 121 | { | ||
82 | "display_name": "credit scoring", | 122 | "display_name": "credit scoring", | ||
83 | "id": "9a3dcc58-475a-44f6-b61b-52689b17951f", | 123 | "id": "9a3dcc58-475a-44f6-b61b-52689b17951f", | ||
84 | "name": "credit scoring", | 124 | "name": "credit scoring", | ||
85 | "state": "active", | 125 | "state": "active", | ||
86 | "vocabulary_id": null | 126 | "vocabulary_id": null | ||
87 | }, | 127 | }, | ||
88 | { | 128 | { | ||
89 | "display_name": "imbalanced learning", | 129 | "display_name": "imbalanced learning", | ||
90 | "id": "1edf429a-1356-4e69-aec4-49bc8804819d", | 130 | "id": "1edf429a-1356-4e69-aec4-49bc8804819d", | ||
91 | "name": "imbalanced learning", | 131 | "name": "imbalanced learning", | ||
92 | "state": "active", | 132 | "state": "active", | ||
93 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
94 | }, | 134 | }, | ||
95 | { | 135 | { | ||
96 | "display_name": "tabular data", | 136 | "display_name": "tabular data", | ||
97 | "id": "c9dfa636-92d9-4b22-bfee-f37737c07698", | 137 | "id": "c9dfa636-92d9-4b22-bfee-f37737c07698", | ||
98 | "name": "tabular data", | 138 | "name": "tabular data", | ||
99 | "state": "active", | 139 | "state": "active", | ||
100 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
101 | } | 141 | } | ||
102 | ], | 142 | ], | ||
103 | "title": "Conditional Wasserstein GAN-based Oversampling of Tabular | 143 | "title": "Conditional Wasserstein GAN-based Oversampling of Tabular | ||
104 | Data for Imbalanced Learning", | 144 | Data for Imbalanced Learning", | ||
105 | "type": "dataset", | 145 | "type": "dataset", | ||
106 | "version": "" | 146 | "version": "" | ||
107 | } | 147 | } |