Changes
On December 3, 2024 at 10:51:31 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Training Recurrent Neural Networks via Dynamical Trajectory-Based Optimization -
Changed value of field
doi_date_published
to2024-12-03
in Training Recurrent Neural Networks via Dynamical Trajectory-Based Optimization -
Added resource Original Metadata to Training Recurrent Neural Networks via Dynamical Trajectory-Based Optimization
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Hamid Khodabandehlou", | 3 | "author": "Hamid Khodabandehlou", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.1016/j.neucom.2019.08.058", | 7 | "defined_in": "https://doi.org/10.1016/j.neucom.2019.08.058", | ||
8 | "doi": "10.57702/h78armzt", | 8 | "doi": "10.57702/h78armzt", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "M. Sami Fadali", | 15 | "extra_author": "M. Sami Fadali", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Global Optimization", | 22 | "display_name": "Global Optimization", | ||
23 | "id": "26fda02d-b7cd-434e-91b5-694032c46bc7", | 23 | "id": "26fda02d-b7cd-434e-91b5-694032c46bc7", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "global-optimization", | 25 | "name": "global-optimization", | ||
26 | "title": "Global Optimization" | 26 | "title": "Global Optimization" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Neural Networks", | 30 | "display_name": "Neural Networks", | ||
31 | "id": "c9ee57da-3813-4bee-94f4-4a66273cf23f", | 31 | "id": "c9ee57da-3813-4bee-94f4-4a66273cf23f", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "neural-networks", | 33 | "name": "neural-networks", | ||
34 | "title": "Neural Networks" | 34 | "title": "Neural Networks" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "System Identification", | 38 | "display_name": "System Identification", | ||
39 | "id": "9cec490c-677f-4350-aad9-fe9cf5162835", | 39 | "id": "9cec490c-677f-4350-aad9-fe9cf5162835", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "system-identification", | 41 | "name": "system-identification", | ||
42 | "title": "System Identification" | 42 | "title": "System Identification" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "id": "fa2f60ac-fa84-4515-b878-3167fdd9d8c2", | 45 | "id": "fa2f60ac-fa84-4515-b878-3167fdd9d8c2", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "landing_page": "", | 47 | "landing_page": "", | ||
48 | "license_title": null, | 48 | "license_title": null, | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "metadata_created": "2024-12-03T10:51:29.930877", | 50 | "metadata_created": "2024-12-03T10:51:29.930877", | ||
n | 51 | "metadata_modified": "2024-12-03T10:51:29.930882", | n | 51 | "metadata_modified": "2024-12-03T10:51:30.273385", |
52 | "name": | 52 | "name": | ||
53 | ecurrent-neural-networks-via-dynamical-trajectory-based-optimization", | 53 | ecurrent-neural-networks-via-dynamical-trajectory-based-optimization", | ||
54 | "notes": "The dataset used in this paper is a recurrent neural | 54 | "notes": "The dataset used in this paper is a recurrent neural | ||
55 | network with one hidden layer. The structure of the network is shown | 55 | network with one hidden layer. The structure of the network is shown | ||
56 | in Fig. 1. The input-output relation of the network is defined as: | 56 | in Fig. 1. The input-output relation of the network is defined as: | ||
57 | z(k) = \u03c0(u(k) + b z(k-1)), y\u02d7(k) = v z(k).", | 57 | z(k) = \u03c0(u(k) + b z(k-1)), y\u02d7(k) = v z(k).", | ||
n | 58 | "num_resources": 0, | n | 58 | "num_resources": 1, |
59 | "num_tags": 3, | 59 | "num_tags": 3, | ||
60 | "organization": { | 60 | "organization": { | ||
61 | "approval_status": "approved", | 61 | "approval_status": "approved", | ||
62 | "created": "2024-11-25T12:11:38.292601", | 62 | "created": "2024-11-25T12:11:38.292601", | ||
63 | "description": "", | 63 | "description": "", | ||
64 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 64 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
65 | "image_url": "", | 65 | "image_url": "", | ||
66 | "is_organization": true, | 66 | "is_organization": true, | ||
67 | "name": "no-organization", | 67 | "name": "no-organization", | ||
68 | "state": "active", | 68 | "state": "active", | ||
69 | "title": "No Organization", | 69 | "title": "No Organization", | ||
70 | "type": "organization" | 70 | "type": "organization" | ||
71 | }, | 71 | }, | ||
72 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 72 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
73 | "private": false, | 73 | "private": false, | ||
74 | "relationships_as_object": [], | 74 | "relationships_as_object": [], | ||
75 | "relationships_as_subject": [], | 75 | "relationships_as_subject": [], | ||
t | 76 | "resources": [], | t | 76 | "resources": [ |
77 | { | ||||
78 | "cache_last_updated": null, | ||||
79 | "cache_url": null, | ||||
80 | "created": "2024-12-03T11:50:18", | ||||
81 | "data": [ | ||||
82 | "dcterms:title", | ||||
83 | "dcterms:accessRights", | ||||
84 | "dcterms:creator", | ||||
85 | "dcterms:description", | ||||
86 | "dcterms:issued", | ||||
87 | "dcterms:language", | ||||
88 | "dcterms:identifier", | ||||
89 | "dcat:theme", | ||||
90 | "dcterms:type", | ||||
91 | "dcat:keyword", | ||||
92 | "dcat:landingPage", | ||||
93 | "dcterms:hasVersion", | ||||
94 | "dcterms:format", | ||||
95 | "mls:task", | ||||
96 | "datacite:isDescribedBy" | ||||
97 | ], | ||||
98 | "description": "The json representation of the dataset with its | ||||
99 | distributions based on DCAT.", | ||||
100 | "format": "JSON", | ||||
101 | "hash": "", | ||||
102 | "id": "0f47dd20-65af-4370-89e7-b09c8110459f", | ||||
103 | "last_modified": "2024-12-03T10:51:30.266575", | ||||
104 | "metadata_modified": "2024-12-03T10:51:30.276108", | ||||
105 | "mimetype": "application/json", | ||||
106 | "mimetype_inner": null, | ||||
107 | "name": "Original Metadata", | ||||
108 | "package_id": "fa2f60ac-fa84-4515-b878-3167fdd9d8c2", | ||||
109 | "position": 0, | ||||
110 | "resource_type": null, | ||||
111 | "size": 933, | ||||
112 | "state": "active", | ||||
113 | "url": | ||||
114 | resource/0f47dd20-65af-4370-89e7-b09c8110459f/download/metadata.json", | ||||
115 | "url_type": "upload" | ||||
116 | } | ||||
117 | ], | ||||
77 | "services_used_list": "", | 118 | "services_used_list": "", | ||
78 | "state": "active", | 119 | "state": "active", | ||
79 | "tags": [ | 120 | "tags": [ | ||
80 | { | 121 | { | ||
81 | "display_name": "Global Optimization", | 122 | "display_name": "Global Optimization", | ||
82 | "id": "ba1f1e76-86e0-4805-8330-73870ba8e6db", | 123 | "id": "ba1f1e76-86e0-4805-8330-73870ba8e6db", | ||
83 | "name": "Global Optimization", | 124 | "name": "Global Optimization", | ||
84 | "state": "active", | 125 | "state": "active", | ||
85 | "vocabulary_id": null | 126 | "vocabulary_id": null | ||
86 | }, | 127 | }, | ||
87 | { | 128 | { | ||
88 | "display_name": "Recurrent Neural Networks", | 129 | "display_name": "Recurrent Neural Networks", | ||
89 | "id": "a1b38204-8bdd-4bb3-ae09-e2fa9348c448", | 130 | "id": "a1b38204-8bdd-4bb3-ae09-e2fa9348c448", | ||
90 | "name": "Recurrent Neural Networks", | 131 | "name": "Recurrent Neural Networks", | ||
91 | "state": "active", | 132 | "state": "active", | ||
92 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
93 | }, | 134 | }, | ||
94 | { | 135 | { | ||
95 | "display_name": "Trajectory-Based Optimization", | 136 | "display_name": "Trajectory-Based Optimization", | ||
96 | "id": "32248401-058d-4aad-8e69-d562767435dc", | 137 | "id": "32248401-058d-4aad-8e69-d562767435dc", | ||
97 | "name": "Trajectory-Based Optimization", | 138 | "name": "Trajectory-Based Optimization", | ||
98 | "state": "active", | 139 | "state": "active", | ||
99 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
100 | } | 141 | } | ||
101 | ], | 142 | ], | ||
102 | "title": "Training Recurrent Neural Networks via Dynamical | 143 | "title": "Training Recurrent Neural Networks via Dynamical | ||
103 | Trajectory-Based Optimization", | 144 | Trajectory-Based Optimization", | ||
104 | "type": "dataset", | 145 | "type": "dataset", | ||
105 | "version": "" | 146 | "version": "" | ||
106 | } | 147 | } |