Changes
On December 17, 2024 at 12:19:39 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Inferring and Learning from Neuronal Correspondences -
Changed value of field
doi_date_published
to2024-12-17
in Inferring and Learning from Neuronal Correspondences -
Added resource Original Metadata to Inferring and Learning from Neuronal Correspondences
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Ashish Kapoor", | 3 | "author": "Ashish Kapoor", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.1501.05973", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.1501.05973", | ||
8 | "doi": "10.57702/opktwqt0", | 8 | "doi": "10.57702/opktwqt0", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-17", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "E. Paxon Frady", | 15 | "extra_author": "E. Paxon Frady", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Stefanie Jegelka", | 19 | "extra_author": "Stefanie Jegelka", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "William B. Kristan", | 23 | "extra_author": "William B. Kristan", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Eric Horvitz", | 27 | "extra_author": "Eric Horvitz", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [ | 31 | "groups": [ | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Correspondence Matching", | 34 | "display_name": "Correspondence Matching", | ||
35 | "id": "1d256b67-fff1-4713-b20a-0e663e473f2d", | 35 | "id": "1d256b67-fff1-4713-b20a-0e663e473f2d", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "correspondence-matching", | 37 | "name": "correspondence-matching", | ||
38 | "title": "Correspondence Matching" | 38 | "title": "Correspondence Matching" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Metric Learning", | 42 | "display_name": "Metric Learning", | ||
43 | "id": "840811f0-e04d-45d9-a841-68700c6f5d20", | 43 | "id": "840811f0-e04d-45d9-a841-68700c6f5d20", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "metric-learning", | 45 | "name": "metric-learning", | ||
46 | "title": "Metric Learning" | 46 | "title": "Metric Learning" | ||
47 | }, | 47 | }, | ||
48 | { | 48 | { | ||
49 | "description": "", | 49 | "description": "", | ||
50 | "display_name": "Neurobiology", | 50 | "display_name": "Neurobiology", | ||
51 | "id": "59cbe926-e385-425e-ba50-562d16a7a4e5", | 51 | "id": "59cbe926-e385-425e-ba50-562d16a7a4e5", | ||
52 | "image_display_url": "", | 52 | "image_display_url": "", | ||
53 | "name": "neurobiology", | 53 | "name": "neurobiology", | ||
54 | "title": "Neurobiology" | 54 | "title": "Neurobiology" | ||
55 | }, | 55 | }, | ||
56 | { | 56 | { | ||
57 | "description": "", | 57 | "description": "", | ||
58 | "display_name": "Probabilistic Dimensionality Reduction", | 58 | "display_name": "Probabilistic Dimensionality Reduction", | ||
59 | "id": "5d5571f3-e844-4bc1-a630-87c76bd04551", | 59 | "id": "5d5571f3-e844-4bc1-a630-87c76bd04551", | ||
60 | "image_display_url": "", | 60 | "image_display_url": "", | ||
61 | "name": "probabilistic-dimensionality-reduction", | 61 | "name": "probabilistic-dimensionality-reduction", | ||
62 | "title": "Probabilistic Dimensionality Reduction" | 62 | "title": "Probabilistic Dimensionality Reduction" | ||
63 | } | 63 | } | ||
64 | ], | 64 | ], | ||
65 | "id": "769a1cea-ae01-444f-b203-2d74b97625f7", | 65 | "id": "769a1cea-ae01-444f-b203-2d74b97625f7", | ||
66 | "isopen": false, | 66 | "isopen": false, | ||
67 | "landing_page": "", | 67 | "landing_page": "", | ||
68 | "license_title": null, | 68 | "license_title": null, | ||
69 | "link_orkg": "", | 69 | "link_orkg": "", | ||
70 | "metadata_created": "2024-12-17T12:19:37.835368", | 70 | "metadata_created": "2024-12-17T12:19:37.835368", | ||
n | 71 | "metadata_modified": "2024-12-17T12:19:37.835373", | n | 71 | "metadata_modified": "2024-12-17T12:19:38.202631", |
72 | "name": "inferring-and-learning-from-neuronal-correspondences", | 72 | "name": "inferring-and-learning-from-neuronal-correspondences", | ||
73 | "notes": "The dataset is used for inferring and learning from | 73 | "notes": "The dataset is used for inferring and learning from | ||
74 | neuronal correspondences in the European medicinal leech.", | 74 | neuronal correspondences in the European medicinal leech.", | ||
n | 75 | "num_resources": 0, | n | 75 | "num_resources": 1, |
76 | "num_tags": 5, | 76 | "num_tags": 5, | ||
77 | "organization": { | 77 | "organization": { | ||
78 | "approval_status": "approved", | 78 | "approval_status": "approved", | ||
79 | "created": "2024-11-25T12:11:38.292601", | 79 | "created": "2024-11-25T12:11:38.292601", | ||
80 | "description": "", | 80 | "description": "", | ||
81 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 81 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
82 | "image_url": "", | 82 | "image_url": "", | ||
83 | "is_organization": true, | 83 | "is_organization": true, | ||
84 | "name": "no-organization", | 84 | "name": "no-organization", | ||
85 | "state": "active", | 85 | "state": "active", | ||
86 | "title": "No Organization", | 86 | "title": "No Organization", | ||
87 | "type": "organization" | 87 | "type": "organization" | ||
88 | }, | 88 | }, | ||
89 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 89 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
90 | "private": false, | 90 | "private": false, | ||
91 | "relationships_as_object": [], | 91 | "relationships_as_object": [], | ||
92 | "relationships_as_subject": [], | 92 | "relationships_as_subject": [], | ||
t | 93 | "resources": [], | t | 93 | "resources": [ |
94 | { | ||||
95 | "cache_last_updated": null, | ||||
96 | "cache_url": null, | ||||
97 | "created": "2024-12-17T13:07:25", | ||||
98 | "data": [ | ||||
99 | "dcterms:title", | ||||
100 | "dcterms:accessRights", | ||||
101 | "dcterms:creator", | ||||
102 | "dcterms:description", | ||||
103 | "dcterms:issued", | ||||
104 | "dcterms:language", | ||||
105 | "dcterms:identifier", | ||||
106 | "dcat:theme", | ||||
107 | "dcterms:type", | ||||
108 | "dcat:keyword", | ||||
109 | "dcat:landingPage", | ||||
110 | "dcterms:hasVersion", | ||||
111 | "dcterms:format", | ||||
112 | "mls:task", | ||||
113 | "datacite:isDescribedBy" | ||||
114 | ], | ||||
115 | "description": "The json representation of the dataset with its | ||||
116 | distributions based on DCAT.", | ||||
117 | "format": "JSON", | ||||
118 | "hash": "", | ||||
119 | "id": "9ddd284c-8c26-4a3e-911d-146aa5cb84b5", | ||||
120 | "last_modified": "2024-12-17T12:19:38.195296", | ||||
121 | "metadata_modified": "2024-12-17T12:19:38.205393", | ||||
122 | "mimetype": "application/json", | ||||
123 | "mimetype_inner": null, | ||||
124 | "name": "Original Metadata", | ||||
125 | "package_id": "769a1cea-ae01-444f-b203-2d74b97625f7", | ||||
126 | "position": 0, | ||||
127 | "resource_type": null, | ||||
128 | "size": 935, | ||||
129 | "state": "active", | ||||
130 | "url": | ||||
131 | resource/9ddd284c-8c26-4a3e-911d-146aa5cb84b5/download/metadata.json", | ||||
132 | "url_type": "upload" | ||||
133 | } | ||||
134 | ], | ||||
94 | "services_used_list": "", | 135 | "services_used_list": "", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "tags": [ | 137 | "tags": [ | ||
97 | { | 138 | { | ||
98 | "display_name": "European medicinal leech", | 139 | "display_name": "European medicinal leech", | ||
99 | "id": "e8cb3b26-7015-42ea-a507-c8d5479d3f8e", | 140 | "id": "e8cb3b26-7015-42ea-a507-c8d5479d3f8e", | ||
100 | "name": "European medicinal leech", | 141 | "name": "European medicinal leech", | ||
101 | "state": "active", | 142 | "state": "active", | ||
102 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
103 | }, | 144 | }, | ||
104 | { | 145 | { | ||
105 | "display_name": "correspondence matching", | 146 | "display_name": "correspondence matching", | ||
106 | "id": "04c639a1-b226-4c4f-83be-424c6c698c0b", | 147 | "id": "04c639a1-b226-4c4f-83be-424c6c698c0b", | ||
107 | "name": "correspondence matching", | 148 | "name": "correspondence matching", | ||
108 | "state": "active", | 149 | "state": "active", | ||
109 | "vocabulary_id": null | 150 | "vocabulary_id": null | ||
110 | }, | 151 | }, | ||
111 | { | 152 | { | ||
112 | "display_name": "metric learning", | 153 | "display_name": "metric learning", | ||
113 | "id": "34c225f3-0f21-4409-896c-fc4c9d263d60", | 154 | "id": "34c225f3-0f21-4409-896c-fc4c9d263d60", | ||
114 | "name": "metric learning", | 155 | "name": "metric learning", | ||
115 | "state": "active", | 156 | "state": "active", | ||
116 | "vocabulary_id": null | 157 | "vocabulary_id": null | ||
117 | }, | 158 | }, | ||
118 | { | 159 | { | ||
119 | "display_name": "neurobiology", | 160 | "display_name": "neurobiology", | ||
120 | "id": "20948cac-c1b6-43bd-885e-050597aa09eb", | 161 | "id": "20948cac-c1b6-43bd-885e-050597aa09eb", | ||
121 | "name": "neurobiology", | 162 | "name": "neurobiology", | ||
122 | "state": "active", | 163 | "state": "active", | ||
123 | "vocabulary_id": null | 164 | "vocabulary_id": null | ||
124 | }, | 165 | }, | ||
125 | { | 166 | { | ||
126 | "display_name": "neuronal correspondences", | 167 | "display_name": "neuronal correspondences", | ||
127 | "id": "5da29cbb-2148-458a-bc74-f44dac5902e4", | 168 | "id": "5da29cbb-2148-458a-bc74-f44dac5902e4", | ||
128 | "name": "neuronal correspondences", | 169 | "name": "neuronal correspondences", | ||
129 | "state": "active", | 170 | "state": "active", | ||
130 | "vocabulary_id": null | 171 | "vocabulary_id": null | ||
131 | } | 172 | } | ||
132 | ], | 173 | ], | ||
133 | "title": "Inferring and Learning from Neuronal Correspondences", | 174 | "title": "Inferring and Learning from Neuronal Correspondences", | ||
134 | "type": "dataset", | 175 | "type": "dataset", | ||
135 | "version": "" | 176 | "version": "" | ||
136 | } | 177 | } |