Changes
On December 3, 2024 at 9:56:57 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in AutoPET 2022 challenge -
Changed value of field
doi_date_published
to2024-12-03
in AutoPET 2022 challenge -
Added resource Original Metadata to AutoPET 2022 challenge
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Simone Bendazzoli", | 3 | "author": "Simone Bendazzoli", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/2ko05ank", | 8 | "doi": "10.57702/2ko05ank", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Mehdi Astaraki", | 15 | "extra_author": "Mehdi Astaraki", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Tumor Segmentation", | 22 | "display_name": "Tumor Segmentation", | ||
23 | "id": "73a1bc1b-17ff-4f81-b2a6-635212ea75e4", | 23 | "id": "73a1bc1b-17ff-4f81-b2a6-635212ea75e4", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "tumor-segmentation", | 25 | "name": "tumor-segmentation", | ||
26 | "title": "Tumor Segmentation" | 26 | "title": "Tumor Segmentation" | ||
27 | } | 27 | } | ||
28 | ], | 28 | ], | ||
29 | "id": "88af19ab-2f3f-412c-a03a-30ac10353d5f", | 29 | "id": "88af19ab-2f3f-412c-a03a-30ac10353d5f", | ||
30 | "isopen": false, | 30 | "isopen": false, | ||
31 | "landing_page": "https://github.com/SimoneBendazzoli93/PriorNet", | 31 | "landing_page": "https://github.com/SimoneBendazzoli93/PriorNet", | ||
32 | "license_title": null, | 32 | "license_title": null, | ||
33 | "link_orkg": "", | 33 | "link_orkg": "", | ||
34 | "metadata_created": "2024-12-03T09:56:55.490979", | 34 | "metadata_created": "2024-12-03T09:56:55.490979", | ||
n | 35 | "metadata_modified": "2024-12-03T09:56:55.490984", | n | 35 | "metadata_modified": "2024-12-03T09:56:55.915859", |
36 | "name": "autopet-2022-challenge", | 36 | "name": "autopet-2022-challenge", | ||
37 | "notes": "Tumor segmentation in PET-CT images is challenging due to | 37 | "notes": "Tumor segmentation in PET-CT images is challenging due to | ||
38 | the dual nature of the acquired information: low metabolic information | 38 | the dual nature of the acquired information: low metabolic information | ||
39 | in CT and low spatial resolution in PET.", | 39 | in CT and low spatial resolution in PET.", | ||
n | 40 | "num_resources": 0, | n | 40 | "num_resources": 1, |
41 | "num_tags": 3, | 41 | "num_tags": 3, | ||
42 | "organization": { | 42 | "organization": { | ||
43 | "approval_status": "approved", | 43 | "approval_status": "approved", | ||
44 | "created": "2024-11-25T12:11:38.292601", | 44 | "created": "2024-11-25T12:11:38.292601", | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 46 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
47 | "image_url": "", | 47 | "image_url": "", | ||
48 | "is_organization": true, | 48 | "is_organization": true, | ||
49 | "name": "no-organization", | 49 | "name": "no-organization", | ||
50 | "state": "active", | 50 | "state": "active", | ||
51 | "title": "No Organization", | 51 | "title": "No Organization", | ||
52 | "type": "organization" | 52 | "type": "organization" | ||
53 | }, | 53 | }, | ||
54 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 54 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
55 | "private": false, | 55 | "private": false, | ||
56 | "relationships_as_object": [], | 56 | "relationships_as_object": [], | ||
57 | "relationships_as_subject": [], | 57 | "relationships_as_subject": [], | ||
t | 58 | "resources": [], | t | 58 | "resources": [ |
59 | { | ||||
60 | "cache_last_updated": null, | ||||
61 | "cache_url": null, | ||||
62 | "created": "2024-12-03T10:49:30", | ||||
63 | "data": [ | ||||
64 | "dcterms:title", | ||||
65 | "dcterms:accessRights", | ||||
66 | "dcterms:creator", | ||||
67 | "dcterms:description", | ||||
68 | "dcterms:issued", | ||||
69 | "dcterms:language", | ||||
70 | "dcterms:identifier", | ||||
71 | "dcat:theme", | ||||
72 | "dcterms:type", | ||||
73 | "dcat:keyword", | ||||
74 | "dcat:landingPage", | ||||
75 | "dcterms:hasVersion", | ||||
76 | "dcterms:format", | ||||
77 | "mls:task" | ||||
78 | ], | ||||
79 | "description": "The json representation of the dataset with its | ||||
80 | distributions based on DCAT.", | ||||
81 | "format": "JSON", | ||||
82 | "hash": "", | ||||
83 | "id": "3f875516-114b-4ee7-a38c-117b33a19671", | ||||
84 | "last_modified": "2024-12-03T09:56:55.908814", | ||||
85 | "metadata_modified": "2024-12-03T09:56:55.918558", | ||||
86 | "mimetype": "application/json", | ||||
87 | "mimetype_inner": null, | ||||
88 | "name": "Original Metadata", | ||||
89 | "package_id": "88af19ab-2f3f-412c-a03a-30ac10353d5f", | ||||
90 | "position": 0, | ||||
91 | "resource_type": null, | ||||
92 | "size": 698, | ||||
93 | "state": "active", | ||||
94 | "url": | ||||
95 | resource/3f875516-114b-4ee7-a38c-117b33a19671/download/metadata.json", | ||||
96 | "url_type": "upload" | ||||
97 | } | ||||
98 | ], | ||||
59 | "services_used_list": "", | 99 | "services_used_list": "", | ||
60 | "state": "active", | 100 | "state": "active", | ||
61 | "tags": [ | 101 | "tags": [ | ||
62 | { | 102 | { | ||
63 | "display_name": "Deep Learning", | 103 | "display_name": "Deep Learning", | ||
64 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | 104 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | ||
65 | "name": "Deep Learning", | 105 | "name": "Deep Learning", | ||
66 | "state": "active", | 106 | "state": "active", | ||
67 | "vocabulary_id": null | 107 | "vocabulary_id": null | ||
68 | }, | 108 | }, | ||
69 | { | 109 | { | ||
70 | "display_name": "PET-CT", | 110 | "display_name": "PET-CT", | ||
71 | "id": "7d7db423-6eaa-493b-8104-e07dab999efc", | 111 | "id": "7d7db423-6eaa-493b-8104-e07dab999efc", | ||
72 | "name": "PET-CT", | 112 | "name": "PET-CT", | ||
73 | "state": "active", | 113 | "state": "active", | ||
74 | "vocabulary_id": null | 114 | "vocabulary_id": null | ||
75 | }, | 115 | }, | ||
76 | { | 116 | { | ||
77 | "display_name": "Tumor Segmentation", | 117 | "display_name": "Tumor Segmentation", | ||
78 | "id": "0cf8dc8e-7ddd-44c1-8a15-ece7938c454e", | 118 | "id": "0cf8dc8e-7ddd-44c1-8a15-ece7938c454e", | ||
79 | "name": "Tumor Segmentation", | 119 | "name": "Tumor Segmentation", | ||
80 | "state": "active", | 120 | "state": "active", | ||
81 | "vocabulary_id": null | 121 | "vocabulary_id": null | ||
82 | } | 122 | } | ||
83 | ], | 123 | ], | ||
84 | "title": "AutoPET 2022 challenge", | 124 | "title": "AutoPET 2022 challenge", | ||
85 | "type": "dataset", | 125 | "type": "dataset", | ||
86 | "version": "" | 126 | "version": "" | ||
87 | } | 127 | } |