Changes
On December 16, 2024 at 5:41:01 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Multimodal Transformers for Wireless Communications: A Case Study in Beam Prediction -
Changed value of field
doi_date_published
to2024-12-16
in Multimodal Transformers for Wireless Communications: A Case Study in Beam Prediction -
Added resource Original Metadata to Multimodal Transformers for Wireless Communications: A Case Study in Beam Prediction
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Yu Tian", | 3 | "author": "Yu Tian", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/venz6aao", | 8 | "doi": "10.57702/venz6aao", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Qiyang Zhao", | 15 | "extra_author": "Qiyang Zhao", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Zine el abidine Kherroubi", | 19 | "extra_author": "Zine el abidine Kherroubi", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Fouzi Boukhalfa", | 23 | "extra_author": "Fouzi Boukhalfa", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Kebin Wu", | 27 | "extra_author": "Kebin Wu", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Faouzi Bader", | 31 | "extra_author": "Faouzi Bader", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Multimodal Learning", | 38 | "display_name": "Multimodal Learning", | ||
39 | "id": "a88cb918-103d-4226-a87d-9d9103c1f839", | 39 | "id": "a88cb918-103d-4226-a87d-9d9103c1f839", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "multimodal-learning", | 41 | "name": "multimodal-learning", | ||
42 | "title": "Multimodal Learning" | 42 | "title": "Multimodal Learning" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Wireless Communications", | 46 | "display_name": "Wireless Communications", | ||
47 | "id": "fe4e78e4-abaa-4b73-8040-a3dc83840e5a", | 47 | "id": "fe4e78e4-abaa-4b73-8040-a3dc83840e5a", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "wireless-communications", | 49 | "name": "wireless-communications", | ||
50 | "title": "Wireless Communications" | 50 | "title": "Wireless Communications" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "0ec8cb2b-0c21-4ad6-99f3-0f51d5ef2bea", | 53 | "id": "0ec8cb2b-0c21-4ad6-99f3-0f51d5ef2bea", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": | 55 | "landing_page": | ||
56 | "https://deepsense6g.net/ml-task-multimodal-beam-prediction", | 56 | "https://deepsense6g.net/ml-task-multimodal-beam-prediction", | ||
57 | "license_title": null, | 57 | "license_title": null, | ||
58 | "link_orkg": "", | 58 | "link_orkg": "", | ||
59 | "metadata_created": "2024-12-16T17:41:00.218063", | 59 | "metadata_created": "2024-12-16T17:41:00.218063", | ||
n | 60 | "metadata_modified": "2024-12-16T17:41:00.218069", | n | 60 | "metadata_modified": "2024-12-16T17:41:00.710969", |
61 | "name": | 61 | "name": | ||
62 | formers-for-wireless-communications--a-case-study-in-beam-prediction", | 62 | formers-for-wireless-communications--a-case-study-in-beam-prediction", | ||
63 | "notes": "Multimodal transformer deep learning framework for | 63 | "notes": "Multimodal transformer deep learning framework for | ||
64 | sensing-assisted beam prediction in wireless communications", | 64 | sensing-assisted beam prediction in wireless communications", | ||
n | 65 | "num_resources": 0, | n | 65 | "num_resources": 1, |
66 | "num_tags": 5, | 66 | "num_tags": 5, | ||
67 | "organization": { | 67 | "organization": { | ||
68 | "approval_status": "approved", | 68 | "approval_status": "approved", | ||
69 | "created": "2024-11-25T12:11:38.292601", | 69 | "created": "2024-11-25T12:11:38.292601", | ||
70 | "description": "", | 70 | "description": "", | ||
71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
72 | "image_url": "", | 72 | "image_url": "", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "no-organization", | 74 | "name": "no-organization", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "No Organization", | 76 | "title": "No Organization", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2024-12-16T18:25:29", | ||||
88 | "data": [ | ||||
89 | "dcterms:title", | ||||
90 | "dcterms:accessRights", | ||||
91 | "dcterms:creator", | ||||
92 | "dcterms:description", | ||||
93 | "dcterms:issued", | ||||
94 | "dcterms:language", | ||||
95 | "dcterms:identifier", | ||||
96 | "dcat:theme", | ||||
97 | "dcterms:type", | ||||
98 | "dcat:keyword", | ||||
99 | "dcat:landingPage", | ||||
100 | "dcterms:hasVersion", | ||||
101 | "dcterms:format", | ||||
102 | "mls:task" | ||||
103 | ], | ||||
104 | "description": "The json representation of the dataset with its | ||||
105 | distributions based on DCAT.", | ||||
106 | "format": "JSON", | ||||
107 | "hash": "", | ||||
108 | "id": "08d91ebd-048e-4cb3-9a83-70d8e8e77e9f", | ||||
109 | "last_modified": "2024-12-16T17:41:00.702663", | ||||
110 | "metadata_modified": "2024-12-16T17:41:00.713909", | ||||
111 | "mimetype": "application/json", | ||||
112 | "mimetype_inner": null, | ||||
113 | "name": "Original Metadata", | ||||
114 | "package_id": "0ec8cb2b-0c21-4ad6-99f3-0f51d5ef2bea", | ||||
115 | "position": 0, | ||||
116 | "resource_type": null, | ||||
117 | "size": 913, | ||||
118 | "state": "active", | ||||
119 | "url": | ||||
120 | resource/08d91ebd-048e-4cb3-9a83-70d8e8e77e9f/download/metadata.json", | ||||
121 | "url_type": "upload" | ||||
122 | } | ||||
123 | ], | ||||
84 | "services_used_list": "", | 124 | "services_used_list": "", | ||
85 | "state": "active", | 125 | "state": "active", | ||
86 | "tags": [ | 126 | "tags": [ | ||
87 | { | 127 | { | ||
88 | "display_name": "Beam Prediction", | 128 | "display_name": "Beam Prediction", | ||
89 | "id": "87d1b927-7cd8-42a6-8a36-02c2885dffb8", | 129 | "id": "87d1b927-7cd8-42a6-8a36-02c2885dffb8", | ||
90 | "name": "Beam Prediction", | 130 | "name": "Beam Prediction", | ||
91 | "state": "active", | 131 | "state": "active", | ||
92 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
93 | }, | 133 | }, | ||
94 | { | 134 | { | ||
95 | "display_name": "Deep Learning", | 135 | "display_name": "Deep Learning", | ||
96 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | 136 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | ||
97 | "name": "Deep Learning", | 137 | "name": "Deep Learning", | ||
98 | "state": "active", | 138 | "state": "active", | ||
99 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
100 | }, | 140 | }, | ||
101 | { | 141 | { | ||
102 | "display_name": "Multimodal Learning", | 142 | "display_name": "Multimodal Learning", | ||
103 | "id": "41329983-d90e-4560-a97d-7fa2ba0a1f92", | 143 | "id": "41329983-d90e-4560-a97d-7fa2ba0a1f92", | ||
104 | "name": "Multimodal Learning", | 144 | "name": "Multimodal Learning", | ||
105 | "state": "active", | 145 | "state": "active", | ||
106 | "vocabulary_id": null | 146 | "vocabulary_id": null | ||
107 | }, | 147 | }, | ||
108 | { | 148 | { | ||
109 | "display_name": "Transformer", | 149 | "display_name": "Transformer", | ||
110 | "id": "4a4cb187-5e01-464d-b8e9-4b95a87809f4", | 150 | "id": "4a4cb187-5e01-464d-b8e9-4b95a87809f4", | ||
111 | "name": "Transformer", | 151 | "name": "Transformer", | ||
112 | "state": "active", | 152 | "state": "active", | ||
113 | "vocabulary_id": null | 153 | "vocabulary_id": null | ||
114 | }, | 154 | }, | ||
115 | { | 155 | { | ||
116 | "display_name": "Wireless Communications", | 156 | "display_name": "Wireless Communications", | ||
117 | "id": "aceb7484-6a67-4f2f-be8a-b852cfc55073", | 157 | "id": "aceb7484-6a67-4f2f-be8a-b852cfc55073", | ||
118 | "name": "Wireless Communications", | 158 | "name": "Wireless Communications", | ||
119 | "state": "active", | 159 | "state": "active", | ||
120 | "vocabulary_id": null | 160 | "vocabulary_id": null | ||
121 | } | 161 | } | ||
122 | ], | 162 | ], | ||
123 | "title": "Multimodal Transformers for Wireless Communications: A | 163 | "title": "Multimodal Transformers for Wireless Communications: A | ||
124 | Case Study in Beam Prediction", | 164 | Case Study in Beam Prediction", | ||
125 | "type": "dataset", | 165 | "type": "dataset", | ||
126 | "version": "" | 166 | "version": "" | ||
127 | } | 167 | } |