Changes
On December 16, 2024 at 11:23:18 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning -
Changed value of field
doi_date_published
to2024-12-16
in Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning -
Added resource Original Metadata to Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Yuxin Tang", | 3 | "author": "Yuxin Tang", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.00088", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.00088", | ||
8 | "doi": "10.57702/zakgk2ok", | 8 | "doi": "10.57702/zakgk2ok", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Zhimin Ding", | 15 | "extra_author": "Zhimin Ding", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Dimitrije Jankov", | 19 | "extra_author": "Dimitrije Jankov", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Binhang Yuan", | 23 | "extra_author": "Binhang Yuan", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Daniel Bourgeois", | 27 | "extra_author": "Daniel Bourgeois", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Chris Jermaine", | 31 | "extra_author": "Chris Jermaine", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Graph Convolutional Networks", | 38 | "display_name": "Graph Convolutional Networks", | ||
39 | "id": "f69b867e-f967-481f-81f3-643a68db6ee5", | 39 | "id": "f69b867e-f967-481f-81f3-643a68db6ee5", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "graph-convolutional-networks", | 41 | "name": "graph-convolutional-networks", | ||
42 | "title": "Graph Convolutional Networks" | 42 | "title": "Graph Convolutional Networks" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Knowledge Graph Embedding", | 46 | "display_name": "Knowledge Graph Embedding", | ||
47 | "id": "35ca5f67-ef91-4543-a26a-66d6123be2a8", | 47 | "id": "35ca5f67-ef91-4543-a26a-66d6123be2a8", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "knowledge-graph-embedding", | 49 | "name": "knowledge-graph-embedding", | ||
50 | "title": "Knowledge Graph Embedding" | 50 | "title": "Knowledge Graph Embedding" | ||
51 | }, | 51 | }, | ||
52 | { | 52 | { | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "display_name": "Non-negative matrix factorization", | 54 | "display_name": "Non-negative matrix factorization", | ||
55 | "id": "9d90663e-5d86-4d8e-bd28-5a64ef04a6f4", | 55 | "id": "9d90663e-5d86-4d8e-bd28-5a64ef04a6f4", | ||
56 | "image_display_url": "", | 56 | "image_display_url": "", | ||
57 | "name": "non-negative-matrix-factorization", | 57 | "name": "non-negative-matrix-factorization", | ||
58 | "title": "Non-negative matrix factorization" | 58 | "title": "Non-negative matrix factorization" | ||
59 | } | 59 | } | ||
60 | ], | 60 | ], | ||
61 | "id": "3f7cad57-2d9a-4932-b89e-22a790649485", | 61 | "id": "3f7cad57-2d9a-4932-b89e-22a790649485", | ||
62 | "isopen": false, | 62 | "isopen": false, | ||
63 | "landing_page": "", | 63 | "landing_page": "", | ||
64 | "license_title": null, | 64 | "license_title": null, | ||
65 | "link_orkg": "", | 65 | "link_orkg": "", | ||
66 | "metadata_created": "2024-12-16T23:23:16.388558", | 66 | "metadata_created": "2024-12-16T23:23:16.388558", | ||
n | 67 | "metadata_modified": "2024-12-16T23:23:16.388564", | n | 67 | "metadata_modified": "2024-12-16T23:23:16.967396", |
68 | "name": | 68 | "name": | ||
69 | ion-of-relational-computations-for-very-large-scale-machine-learning", | 69 | ion-of-relational-computations-for-very-large-scale-machine-learning", | ||
70 | "notes": "The relational data model was designed to facilitate | 70 | "notes": "The relational data model was designed to facilitate | ||
71 | large-scale data management and analytics. We consider the problem of | 71 | large-scale data management and analytics. We consider the problem of | ||
72 | how to differentiate computations expressed relationally.", | 72 | how to differentiate computations expressed relationally.", | ||
n | 73 | "num_resources": 0, | n | 73 | "num_resources": 1, |
74 | "num_tags": 3, | 74 | "num_tags": 3, | ||
75 | "organization": { | 75 | "organization": { | ||
76 | "approval_status": "approved", | 76 | "approval_status": "approved", | ||
77 | "created": "2024-11-25T12:11:38.292601", | 77 | "created": "2024-11-25T12:11:38.292601", | ||
78 | "description": "", | 78 | "description": "", | ||
79 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 79 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
80 | "image_url": "", | 80 | "image_url": "", | ||
81 | "is_organization": true, | 81 | "is_organization": true, | ||
82 | "name": "no-organization", | 82 | "name": "no-organization", | ||
83 | "state": "active", | 83 | "state": "active", | ||
84 | "title": "No Organization", | 84 | "title": "No Organization", | ||
85 | "type": "organization" | 85 | "type": "organization" | ||
86 | }, | 86 | }, | ||
87 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 87 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
88 | "private": false, | 88 | "private": false, | ||
89 | "relationships_as_object": [], | 89 | "relationships_as_object": [], | ||
90 | "relationships_as_subject": [], | 90 | "relationships_as_subject": [], | ||
t | 91 | "resources": [], | t | 91 | "resources": [ |
92 | { | ||||
93 | "cache_last_updated": null, | ||||
94 | "cache_url": null, | ||||
95 | "created": "2024-12-16T23:37:10", | ||||
96 | "data": [ | ||||
97 | "dcterms:title", | ||||
98 | "dcterms:accessRights", | ||||
99 | "dcterms:creator", | ||||
100 | "dcterms:description", | ||||
101 | "dcterms:issued", | ||||
102 | "dcterms:language", | ||||
103 | "dcterms:identifier", | ||||
104 | "dcat:theme", | ||||
105 | "dcterms:type", | ||||
106 | "dcat:keyword", | ||||
107 | "dcat:landingPage", | ||||
108 | "dcterms:hasVersion", | ||||
109 | "dcterms:format", | ||||
110 | "mls:task", | ||||
111 | "datacite:isDescribedBy" | ||||
112 | ], | ||||
113 | "description": "The json representation of the dataset with its | ||||
114 | distributions based on DCAT.", | ||||
115 | "format": "JSON", | ||||
116 | "hash": "", | ||||
117 | "id": "e681bff0-4d72-41b6-bd32-e9d6517d6e07", | ||||
118 | "last_modified": "2024-12-16T23:23:16.959496", | ||||
119 | "metadata_modified": "2024-12-16T23:23:16.970648", | ||||
120 | "mimetype": "application/json", | ||||
121 | "mimetype_inner": null, | ||||
122 | "name": "Original Metadata", | ||||
123 | "package_id": "3f7cad57-2d9a-4932-b89e-22a790649485", | ||||
124 | "position": 0, | ||||
125 | "resource_type": null, | ||||
126 | "size": 1052, | ||||
127 | "state": "active", | ||||
128 | "url": | ||||
129 | resource/e681bff0-4d72-41b6-bd32-e9d6517d6e07/download/metadata.json", | ||||
130 | "url_type": "upload" | ||||
131 | } | ||||
132 | ], | ||||
92 | "services_used_list": "", | 133 | "services_used_list": "", | ||
93 | "state": "active", | 134 | "state": "active", | ||
94 | "tags": [ | 135 | "tags": [ | ||
95 | { | 136 | { | ||
96 | "display_name": "graph convolutional networks", | 137 | "display_name": "graph convolutional networks", | ||
97 | "id": "7779c845-de19-4500-9080-bf562609769b", | 138 | "id": "7779c845-de19-4500-9080-bf562609769b", | ||
98 | "name": "graph convolutional networks", | 139 | "name": "graph convolutional networks", | ||
99 | "state": "active", | 140 | "state": "active", | ||
100 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
101 | }, | 142 | }, | ||
102 | { | 143 | { | ||
103 | "display_name": "knowledge graph embedding", | 144 | "display_name": "knowledge graph embedding", | ||
104 | "id": "df56ef8b-651d-484d-b8cf-d83cefad17e6", | 145 | "id": "df56ef8b-651d-484d-b8cf-d83cefad17e6", | ||
105 | "name": "knowledge graph embedding", | 146 | "name": "knowledge graph embedding", | ||
106 | "state": "active", | 147 | "state": "active", | ||
107 | "vocabulary_id": null | 148 | "vocabulary_id": null | ||
108 | }, | 149 | }, | ||
109 | { | 150 | { | ||
110 | "display_name": "non-negative matrix factorization", | 151 | "display_name": "non-negative matrix factorization", | ||
111 | "id": "fe7360dd-cd8f-49f5-842f-2283529c0bda", | 152 | "id": "fe7360dd-cd8f-49f5-842f-2283529c0bda", | ||
112 | "name": "non-negative matrix factorization", | 153 | "name": "non-negative matrix factorization", | ||
113 | "state": "active", | 154 | "state": "active", | ||
114 | "vocabulary_id": null | 155 | "vocabulary_id": null | ||
115 | } | 156 | } | ||
116 | ], | 157 | ], | ||
117 | "title": "Auto-Differentiation of Relational Computations for Very | 158 | "title": "Auto-Differentiation of Relational Computations for Very | ||
118 | Large Scale Machine Learning", | 159 | Large Scale Machine Learning", | ||
119 | "type": "dataset", | 160 | "type": "dataset", | ||
120 | "version": "" | 161 | "version": "" | ||
121 | } | 162 | } |