Changes
On December 2, 2024 at 11:14:42 PM UTC, admin:
-
Changed value of field
doi_date_published
to2024-12-02
in Gaussian Process Learning-based Probabilistic Optimal Power Flow -
Changed value of field
doi_status
toTrue
in Gaussian Process Learning-based Probabilistic Optimal Power Flow -
Added resource Original Metadata to Gaussian Process Learning-based Probabilistic Optimal Power Flow
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Parikshit Pareek", | 3 | "author": "Parikshit Pareek", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/004r5xsk", | 8 | "doi": "10.57702/004r5xsk", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Hung D. Nguyen", | 15 | "extra_author": "Hung D. Nguyen", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Gaussian process regression", | 22 | "display_name": "Gaussian process regression", | ||
23 | "id": "f009bc30-2cd5-49db-9fd4-a1648358c5a1", | 23 | "id": "f009bc30-2cd5-49db-9fd4-a1648358c5a1", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "gaussian-process-regression", | 25 | "name": "gaussian-process-regression", | ||
26 | "title": "Gaussian process regression" | 26 | "title": "Gaussian process regression" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Probabilistic Optimal Power Flow", | 30 | "display_name": "Probabilistic Optimal Power Flow", | ||
31 | "id": "fc2132e6-80db-4cdb-80d8-4c580c81d52f", | 31 | "id": "fc2132e6-80db-4cdb-80d8-4c580c81d52f", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "probabilistic-optimal-power-flow", | 33 | "name": "probabilistic-optimal-power-flow", | ||
34 | "title": "Probabilistic Optimal Power Flow" | 34 | "title": "Probabilistic Optimal Power Flow" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "id": "49bcdcee-e38a-4312-aafa-6f2190bf64ee", | 37 | "id": "49bcdcee-e38a-4312-aafa-6f2190bf64ee", | ||
38 | "isopen": false, | 38 | "isopen": false, | ||
39 | "landing_page": "", | 39 | "landing_page": "", | ||
40 | "license_title": null, | 40 | "license_title": null, | ||
41 | "link_orkg": "", | 41 | "link_orkg": "", | ||
42 | "metadata_created": "2024-12-02T23:14:40.675958", | 42 | "metadata_created": "2024-12-02T23:14:40.675958", | ||
n | 43 | "metadata_modified": "2024-12-02T23:14:40.675964", | n | 43 | "metadata_modified": "2024-12-02T23:14:41.381507", |
44 | "name": | 44 | "name": | ||
45 | "gaussian-process-learning-based-probabilistic-optimal-power-flow", | 45 | "gaussian-process-learning-based-probabilistic-optimal-power-flow", | ||
46 | "notes": "The proposed GP-POPF method does not rely on uncertainty | 46 | "notes": "The proposed GP-POPF method does not rely on uncertainty | ||
47 | information and linearization assumptions on the power flow. Compared | 47 | information and linearization assumptions on the power flow. Compared | ||
48 | to data-based methods, the proposed method does not require extensive | 48 | to data-based methods, the proposed method does not require extensive | ||
49 | training samples of POPF solutions, thus reducing computation time.", | 49 | training samples of POPF solutions, thus reducing computation time.", | ||
n | 50 | "num_resources": 0, | n | 50 | "num_resources": 1, |
51 | "num_tags": 4, | 51 | "num_tags": 4, | ||
52 | "organization": { | 52 | "organization": { | ||
53 | "approval_status": "approved", | 53 | "approval_status": "approved", | ||
54 | "created": "2024-11-25T12:11:38.292601", | 54 | "created": "2024-11-25T12:11:38.292601", | ||
55 | "description": "", | 55 | "description": "", | ||
56 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 56 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
57 | "image_url": "", | 57 | "image_url": "", | ||
58 | "is_organization": true, | 58 | "is_organization": true, | ||
59 | "name": "no-organization", | 59 | "name": "no-organization", | ||
60 | "state": "active", | 60 | "state": "active", | ||
61 | "title": "No Organization", | 61 | "title": "No Organization", | ||
62 | "type": "organization" | 62 | "type": "organization" | ||
63 | }, | 63 | }, | ||
64 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 64 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
65 | "private": false, | 65 | "private": false, | ||
66 | "relationships_as_object": [], | 66 | "relationships_as_object": [], | ||
67 | "relationships_as_subject": [], | 67 | "relationships_as_subject": [], | ||
t | 68 | "resources": [], | t | 68 | "resources": [ |
69 | { | ||||
70 | "cache_last_updated": null, | ||||
71 | "cache_url": null, | ||||
72 | "created": "2024-12-02T22:29:38", | ||||
73 | "data": [ | ||||
74 | "dcterms:title", | ||||
75 | "dcterms:accessRights", | ||||
76 | "dcterms:creator", | ||||
77 | "dcterms:description", | ||||
78 | "dcterms:issued", | ||||
79 | "dcterms:language", | ||||
80 | "dcterms:identifier", | ||||
81 | "dcat:theme", | ||||
82 | "dcterms:type", | ||||
83 | "dcat:keyword", | ||||
84 | "dcat:landingPage", | ||||
85 | "dcterms:hasVersion", | ||||
86 | "dcterms:format", | ||||
87 | "mls:task" | ||||
88 | ], | ||||
89 | "description": "The json representation of the dataset with its | ||||
90 | distributions based on DCAT.", | ||||
91 | "format": "JSON", | ||||
92 | "hash": "", | ||||
93 | "id": "757aca74-b94d-421c-95c5-4c5234a10798", | ||||
94 | "last_modified": "2024-12-02T23:14:41.374137", | ||||
95 | "metadata_modified": "2024-12-02T23:14:41.384384", | ||||
96 | "mimetype": "application/json", | ||||
97 | "mimetype_inner": null, | ||||
98 | "name": "Original Metadata", | ||||
99 | "package_id": "49bcdcee-e38a-4312-aafa-6f2190bf64ee", | ||||
100 | "position": 0, | ||||
101 | "resource_type": null, | ||||
102 | "size": 933, | ||||
103 | "state": "active", | ||||
104 | "url": | ||||
105 | resource/757aca74-b94d-421c-95c5-4c5234a10798/download/metadata.json", | ||||
106 | "url_type": "upload" | ||||
107 | } | ||||
108 | ], | ||||
69 | "services_used_list": "", | 109 | "services_used_list": "", | ||
70 | "state": "active", | 110 | "state": "active", | ||
71 | "tags": [ | 111 | "tags": [ | ||
72 | { | 112 | { | ||
73 | "display_name": "Gaussian Process Regression", | 113 | "display_name": "Gaussian Process Regression", | ||
74 | "id": "8922e317-ca0e-4abc-9c19-7c606876457f", | 114 | "id": "8922e317-ca0e-4abc-9c19-7c606876457f", | ||
75 | "name": "Gaussian Process Regression", | 115 | "name": "Gaussian Process Regression", | ||
76 | "state": "active", | 116 | "state": "active", | ||
77 | "vocabulary_id": null | 117 | "vocabulary_id": null | ||
78 | }, | 118 | }, | ||
79 | { | 119 | { | ||
80 | "display_name": "Interpretable Models", | 120 | "display_name": "Interpretable Models", | ||
81 | "id": "d9ca4510-54b4-4f75-ad1e-760219078b4b", | 121 | "id": "d9ca4510-54b4-4f75-ad1e-760219078b4b", | ||
82 | "name": "Interpretable Models", | 122 | "name": "Interpretable Models", | ||
83 | "state": "active", | 123 | "state": "active", | ||
84 | "vocabulary_id": null | 124 | "vocabulary_id": null | ||
85 | }, | 125 | }, | ||
86 | { | 126 | { | ||
87 | "display_name": "Probabilistic Optimal Power Flow", | 127 | "display_name": "Probabilistic Optimal Power Flow", | ||
88 | "id": "8e3c9550-9efb-47d7-869b-867ca3e4440b", | 128 | "id": "8e3c9550-9efb-47d7-869b-867ca3e4440b", | ||
89 | "name": "Probabilistic Optimal Power Flow", | 129 | "name": "Probabilistic Optimal Power Flow", | ||
90 | "state": "active", | 130 | "state": "active", | ||
91 | "vocabulary_id": null | 131 | "vocabulary_id": null | ||
92 | }, | 132 | }, | ||
93 | { | 133 | { | ||
94 | "display_name": "Uncertainty Propagation", | 134 | "display_name": "Uncertainty Propagation", | ||
95 | "id": "0d923bc5-8fa9-4abd-bc06-3f95c25cf519", | 135 | "id": "0d923bc5-8fa9-4abd-bc06-3f95c25cf519", | ||
96 | "name": "Uncertainty Propagation", | 136 | "name": "Uncertainty Propagation", | ||
97 | "state": "active", | 137 | "state": "active", | ||
98 | "vocabulary_id": null | 138 | "vocabulary_id": null | ||
99 | } | 139 | } | ||
100 | ], | 140 | ], | ||
101 | "title": "Gaussian Process Learning-based Probabilistic Optimal | 141 | "title": "Gaussian Process Learning-based Probabilistic Optimal | ||
102 | Power Flow", | 142 | Power Flow", | ||
103 | "type": "dataset", | 143 | "type": "dataset", | ||
104 | "version": "" | 144 | "version": "" | ||
105 | } | 145 | } |