Changes
On December 16, 2024 at 8:19:13 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Abdominal Multi Organ Segmentation 2022 (AMOS2022) challenge dataset -
Changed value of field
doi_date_published
to2024-12-16
in Abdominal Multi Organ Segmentation 2022 (AMOS2022) challenge dataset -
Added resource Original Metadata to Abdominal Multi Organ Segmentation 2022 (AMOS2022) challenge dataset
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Junya Sato", | 3 | "author": "Junya Sato", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2210.13364", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2210.13364", | ||
8 | "doi": "10.57702/36vq29d4", | 8 | "doi": "10.57702/36vq29d4", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Shoji Kido", | 15 | "extra_author": "Shoji Kido", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Medical Image Segmentation", | 22 | "display_name": "Medical Image Segmentation", | ||
23 | "id": "30b6f278-a6f5-4a21-8a07-80737406cc87", | 23 | "id": "30b6f278-a6f5-4a21-8a07-80737406cc87", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "medical-image-segmentation", | 25 | "name": "medical-image-segmentation", | ||
26 | "title": "Medical Image Segmentation" | 26 | "title": "Medical Image Segmentation" | ||
27 | } | 27 | } | ||
28 | ], | 28 | ], | ||
29 | "id": "ffc731ea-a369-4283-a56d-54c6f2506d35", | 29 | "id": "ffc731ea-a369-4283-a56d-54c6f2506d35", | ||
30 | "isopen": false, | 30 | "isopen": false, | ||
31 | "landing_page": "", | 31 | "landing_page": "", | ||
32 | "license_title": null, | 32 | "license_title": null, | ||
33 | "link_orkg": "", | 33 | "link_orkg": "", | ||
34 | "metadata_created": "2024-12-16T20:19:11.651994", | 34 | "metadata_created": "2024-12-16T20:19:11.651994", | ||
n | 35 | "metadata_modified": "2024-12-16T20:19:11.652002", | n | 35 | "metadata_modified": "2024-12-16T20:19:12.019723", |
36 | "name": | 36 | "name": | ||
37 | abdominal-multi-organ-segmentation-2022--amos2022--challenge-dataset", | 37 | abdominal-multi-organ-segmentation-2022--amos2022--challenge-dataset", | ||
38 | "notes": "The Abdominal Multi Organ Segmentation 2022 (AMOS2022) | 38 | "notes": "The Abdominal Multi Organ Segmentation 2022 (AMOS2022) | ||
39 | challenge dataset contains 500 CT and 100 MRI scans collected from | 39 | challenge dataset contains 500 CT and 100 MRI scans collected from | ||
40 | multiple sites, a wide range of imaging conditions, and patient | 40 | multiple sites, a wide range of imaging conditions, and patient | ||
41 | backgrounds with 15 voxel-level annotations.", | 41 | backgrounds with 15 voxel-level annotations.", | ||
n | 42 | "num_resources": 0, | n | 42 | "num_resources": 1, |
43 | "num_tags": 4, | 43 | "num_tags": 4, | ||
44 | "organization": { | 44 | "organization": { | ||
45 | "approval_status": "approved", | 45 | "approval_status": "approved", | ||
46 | "created": "2024-11-25T12:11:38.292601", | 46 | "created": "2024-11-25T12:11:38.292601", | ||
47 | "description": "", | 47 | "description": "", | ||
48 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 48 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
49 | "image_url": "", | 49 | "image_url": "", | ||
50 | "is_organization": true, | 50 | "is_organization": true, | ||
51 | "name": "no-organization", | 51 | "name": "no-organization", | ||
52 | "state": "active", | 52 | "state": "active", | ||
53 | "title": "No Organization", | 53 | "title": "No Organization", | ||
54 | "type": "organization" | 54 | "type": "organization" | ||
55 | }, | 55 | }, | ||
56 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 56 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
57 | "private": false, | 57 | "private": false, | ||
58 | "relationships_as_object": [], | 58 | "relationships_as_object": [], | ||
59 | "relationships_as_subject": [], | 59 | "relationships_as_subject": [], | ||
t | 60 | "resources": [], | t | 60 | "resources": [ |
61 | { | ||||
62 | "cache_last_updated": null, | ||||
63 | "cache_url": null, | ||||
64 | "created": "2024-12-16T18:25:45", | ||||
65 | "data": [ | ||||
66 | "dcterms:title", | ||||
67 | "dcterms:accessRights", | ||||
68 | "dcterms:creator", | ||||
69 | "dcterms:description", | ||||
70 | "dcterms:issued", | ||||
71 | "dcterms:language", | ||||
72 | "dcterms:identifier", | ||||
73 | "dcat:theme", | ||||
74 | "dcterms:type", | ||||
75 | "dcat:keyword", | ||||
76 | "dcat:landingPage", | ||||
77 | "dcterms:hasVersion", | ||||
78 | "dcterms:format", | ||||
79 | "mls:task", | ||||
80 | "datacite:isDescribedBy" | ||||
81 | ], | ||||
82 | "description": "The json representation of the dataset with its | ||||
83 | distributions based on DCAT.", | ||||
84 | "format": "JSON", | ||||
85 | "hash": "", | ||||
86 | "id": "eabb8c60-92c9-4ac2-ba24-e7b851aa59a2", | ||||
87 | "last_modified": "2024-12-16T20:19:12.012122", | ||||
88 | "metadata_modified": "2024-12-16T20:19:12.022654", | ||||
89 | "mimetype": "application/json", | ||||
90 | "mimetype_inner": null, | ||||
91 | "name": "Original Metadata", | ||||
92 | "package_id": "ffc731ea-a369-4283-a56d-54c6f2506d35", | ||||
93 | "position": 0, | ||||
94 | "resource_type": null, | ||||
95 | "size": 870, | ||||
96 | "state": "active", | ||||
97 | "url": | ||||
98 | resource/eabb8c60-92c9-4ac2-ba24-e7b851aa59a2/download/metadata.json", | ||||
99 | "url_type": "upload" | ||||
100 | } | ||||
101 | ], | ||||
61 | "services_used_list": "", | 102 | "services_used_list": "", | ||
62 | "state": "active", | 103 | "state": "active", | ||
63 | "tags": [ | 104 | "tags": [ | ||
64 | { | 105 | { | ||
65 | "display_name": "Abdominal Multi Organ Segmentation", | 106 | "display_name": "Abdominal Multi Organ Segmentation", | ||
66 | "id": "86687b2a-a3de-4edf-96ef-97042e85d56e", | 107 | "id": "86687b2a-a3de-4edf-96ef-97042e85d56e", | ||
67 | "name": "Abdominal Multi Organ Segmentation", | 108 | "name": "Abdominal Multi Organ Segmentation", | ||
68 | "state": "active", | 109 | "state": "active", | ||
69 | "vocabulary_id": null | 110 | "vocabulary_id": null | ||
70 | }, | 111 | }, | ||
71 | { | 112 | { | ||
72 | "display_name": "CT scans", | 113 | "display_name": "CT scans", | ||
73 | "id": "c9a7a2fa-09f0-4ac3-952e-72a465e448fa", | 114 | "id": "c9a7a2fa-09f0-4ac3-952e-72a465e448fa", | ||
74 | "name": "CT scans", | 115 | "name": "CT scans", | ||
75 | "state": "active", | 116 | "state": "active", | ||
76 | "vocabulary_id": null | 117 | "vocabulary_id": null | ||
77 | }, | 118 | }, | ||
78 | { | 119 | { | ||
79 | "display_name": "MRI scans", | 120 | "display_name": "MRI scans", | ||
80 | "id": "12968f7d-e732-4361-821f-67a1b4cb6241", | 121 | "id": "12968f7d-e732-4361-821f-67a1b4cb6241", | ||
81 | "name": "MRI scans", | 122 | "name": "MRI scans", | ||
82 | "state": "active", | 123 | "state": "active", | ||
83 | "vocabulary_id": null | 124 | "vocabulary_id": null | ||
84 | }, | 125 | }, | ||
85 | { | 126 | { | ||
86 | "display_name": "Medical Image Segmentation", | 127 | "display_name": "Medical Image Segmentation", | ||
87 | "id": "a90cdc4c-84c9-4603-8c0e-8e18a0ff936f", | 128 | "id": "a90cdc4c-84c9-4603-8c0e-8e18a0ff936f", | ||
88 | "name": "Medical Image Segmentation", | 129 | "name": "Medical Image Segmentation", | ||
89 | "state": "active", | 130 | "state": "active", | ||
90 | "vocabulary_id": null | 131 | "vocabulary_id": null | ||
91 | } | 132 | } | ||
92 | ], | 133 | ], | ||
93 | "title": "Abdominal Multi Organ Segmentation 2022 (AMOS2022) | 134 | "title": "Abdominal Multi Organ Segmentation 2022 (AMOS2022) | ||
94 | challenge dataset", | 135 | challenge dataset", | ||
95 | "type": "dataset", | 136 | "type": "dataset", | ||
96 | "version": "" | 137 | "version": "" | ||
97 | } | 138 | } |