Changes
On December 2, 2024 at 5:47:23 PM UTC,
-
Changed value of field
doi_status
toTrue
in A Thermal Machine Learning Solver For Chip Simulation -
Changed value of field
doi_date_published
to2024-12-02
in A Thermal Machine Learning Solver For Chip Simulation -
Added resource Original Metadata to A Thermal Machine Learning Solver For Chip Simulation
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Rishikesh Ranade", | 3 | "author": "Rishikesh Ranade", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/wyun1nnb", | 8 | "doi": "10.57702/wyun1nnb", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Haiyang He", | 15 | "extra_author": "Haiyang He", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Jay Pathak", | 19 | "extra_author": "Jay Pathak", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Norman Chang", | 23 | "extra_author": "Norman Chang", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Akhilesh Kumarc", | 27 | "extra_author": "Akhilesh Kumarc", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Jimin Wen", | 31 | "extra_author": "Jimin Wen", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Machine Learning", | 38 | "display_name": "Machine Learning", | ||
39 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | 39 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "machine-learning", | 41 | "name": "machine-learning", | ||
42 | "title": "Machine Learning" | 42 | "title": "Machine Learning" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Thermal Simulation", | 46 | "display_name": "Thermal Simulation", | ||
47 | "id": "af5624a6-5fd1-4a5f-bfc8-f45685e2a7ed", | 47 | "id": "af5624a6-5fd1-4a5f-bfc8-f45685e2a7ed", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "thermal-simulation", | 49 | "name": "thermal-simulation", | ||
50 | "title": "Thermal Simulation" | 50 | "title": "Thermal Simulation" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "56ddbed6-fe5f-4939-a0fd-263cebcd9c25", | 53 | "id": "56ddbed6-fe5f-4939-a0fd-263cebcd9c25", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": "", | 55 | "landing_page": "", | ||
56 | "license_title": null, | 56 | "license_title": null, | ||
57 | "link_orkg": "", | 57 | "link_orkg": "", | ||
58 | "metadata_created": "2024-12-02T17:47:22.398455", | 58 | "metadata_created": "2024-12-02T17:47:22.398455", | ||
n | 59 | "metadata_modified": "2024-12-02T17:47:22.398460", | n | 59 | "metadata_modified": "2024-12-02T17:47:22.827546", |
60 | "name": "a-thermal-machine-learning-solver-for-chip-simulation", | 60 | "name": "a-thermal-machine-learning-solver-for-chip-simulation", | ||
61 | "notes": "Thermal analysis provides deeper insights into electronic | 61 | "notes": "Thermal analysis provides deeper insights into electronic | ||
62 | chips' behavior under different temperature scenarios and enables | 62 | chips' behavior under different temperature scenarios and enables | ||
63 | faster design exploration. However, obtaining detailed and accurate | 63 | faster design exploration. However, obtaining detailed and accurate | ||
64 | thermal profile on chip is very time-consuming using FEM or CFD. | 64 | thermal profile on chip is very time-consuming using FEM or CFD. | ||
65 | Therefore, there is an urgent need for speeding up the on-chip thermal | 65 | Therefore, there is an urgent need for speeding up the on-chip thermal | ||
66 | solution to address various system scenarios. In this paper, we | 66 | solution to address various system scenarios. In this paper, we | ||
67 | propose a thermal machine-learning (ML) solver to speed-up thermal | 67 | propose a thermal machine-learning (ML) solver to speed-up thermal | ||
68 | simulations of chips.", | 68 | simulations of chips.", | ||
n | 69 | "num_resources": 0, | n | 69 | "num_resources": 1, |
70 | "num_tags": 4, | 70 | "num_tags": 4, | ||
71 | "organization": { | 71 | "organization": { | ||
72 | "approval_status": "approved", | 72 | "approval_status": "approved", | ||
73 | "created": "2024-11-25T12:11:38.292601", | 73 | "created": "2024-11-25T12:11:38.292601", | ||
74 | "description": "", | 74 | "description": "", | ||
75 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 75 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
76 | "image_url": "", | 76 | "image_url": "", | ||
77 | "is_organization": true, | 77 | "is_organization": true, | ||
78 | "name": "no-organization", | 78 | "name": "no-organization", | ||
79 | "state": "active", | 79 | "state": "active", | ||
80 | "title": "No Organization", | 80 | "title": "No Organization", | ||
81 | "type": "organization" | 81 | "type": "organization" | ||
82 | }, | 82 | }, | ||
83 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 83 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
84 | "private": false, | 84 | "private": false, | ||
85 | "relationships_as_object": [], | 85 | "relationships_as_object": [], | ||
86 | "relationships_as_subject": [], | 86 | "relationships_as_subject": [], | ||
t | 87 | "resources": [], | t | 87 | "resources": [ |
88 | { | ||||
89 | "cache_last_updated": null, | ||||
90 | "cache_url": null, | ||||
91 | "created": "2024-12-02T18:38:42", | ||||
92 | "data": [ | ||||
93 | "dcterms:title", | ||||
94 | "dcterms:accessRights", | ||||
95 | "dcterms:creator", | ||||
96 | "dcterms:description", | ||||
97 | "dcterms:issued", | ||||
98 | "dcterms:language", | ||||
99 | "dcterms:identifier", | ||||
100 | "dcat:theme", | ||||
101 | "dcterms:type", | ||||
102 | "dcat:keyword", | ||||
103 | "dcat:landingPage", | ||||
104 | "dcterms:hasVersion", | ||||
105 | "dcterms:format", | ||||
106 | "mls:task" | ||||
107 | ], | ||||
108 | "description": "The json representation of the dataset with its | ||||
109 | distributions based on DCAT.", | ||||
110 | "format": "JSON", | ||||
111 | "hash": "", | ||||
112 | "id": "bae1e6b7-3f59-4c17-9103-b315fd8e3a9f", | ||||
113 | "last_modified": "2024-12-02T17:47:22.820059", | ||||
114 | "metadata_modified": "2024-12-02T17:47:22.830282", | ||||
115 | "mimetype": "application/json", | ||||
116 | "mimetype_inner": null, | ||||
117 | "name": "Original Metadata", | ||||
118 | "package_id": "56ddbed6-fe5f-4939-a0fd-263cebcd9c25", | ||||
119 | "position": 0, | ||||
120 | "resource_type": null, | ||||
121 | "size": 1102, | ||||
122 | "state": "active", | ||||
123 | "url": | ||||
124 | resource/bae1e6b7-3f59-4c17-9103-b315fd8e3a9f/download/metadata.json", | ||||
125 | "url_type": "upload" | ||||
126 | } | ||||
127 | ], | ||||
88 | "services_used_list": "", | 128 | "services_used_list": "", | ||
89 | "state": "active", | 129 | "state": "active", | ||
90 | "tags": [ | 130 | "tags": [ | ||
91 | { | 131 | { | ||
92 | "display_name": "chip simulation", | 132 | "display_name": "chip simulation", | ||
93 | "id": "80dd0347-bace-40a7-a5ba-d205e1aca0c3", | 133 | "id": "80dd0347-bace-40a7-a5ba-d205e1aca0c3", | ||
94 | "name": "chip simulation", | 134 | "name": "chip simulation", | ||
95 | "state": "active", | 135 | "state": "active", | ||
96 | "vocabulary_id": null | 136 | "vocabulary_id": null | ||
97 | }, | 137 | }, | ||
98 | { | 138 | { | ||
99 | "display_name": "heat transfer", | 139 | "display_name": "heat transfer", | ||
100 | "id": "f2865854-7b8e-4e66-bbbb-ba9224029221", | 140 | "id": "f2865854-7b8e-4e66-bbbb-ba9224029221", | ||
101 | "name": "heat transfer", | 141 | "name": "heat transfer", | ||
102 | "state": "active", | 142 | "state": "active", | ||
103 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
104 | }, | 144 | }, | ||
105 | { | 145 | { | ||
106 | "display_name": "machine learning", | 146 | "display_name": "machine learning", | ||
107 | "id": "9e42784b-6ee7-47e8-a69a-28b8c510212b", | 147 | "id": "9e42784b-6ee7-47e8-a69a-28b8c510212b", | ||
108 | "name": "machine learning", | 148 | "name": "machine learning", | ||
109 | "state": "active", | 149 | "state": "active", | ||
110 | "vocabulary_id": null | 150 | "vocabulary_id": null | ||
111 | }, | 151 | }, | ||
112 | { | 152 | { | ||
113 | "display_name": "thermal analysis", | 153 | "display_name": "thermal analysis", | ||
114 | "id": "6eeb6818-ec64-4736-8ec7-7adbe203c53b", | 154 | "id": "6eeb6818-ec64-4736-8ec7-7adbe203c53b", | ||
115 | "name": "thermal analysis", | 155 | "name": "thermal analysis", | ||
116 | "state": "active", | 156 | "state": "active", | ||
117 | "vocabulary_id": null | 157 | "vocabulary_id": null | ||
118 | } | 158 | } | ||
119 | ], | 159 | ], | ||
120 | "title": "A Thermal Machine Learning Solver For Chip Simulation", | 160 | "title": "A Thermal Machine Learning Solver For Chip Simulation", | ||
121 | "type": "dataset", | 161 | "type": "dataset", | ||
122 | "version": "" | 162 | "version": "" | ||
123 | } | 163 | } |