Changes
On December 16, 2024 at 8:26:04 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping -
Changed value of field
doi_date_published
to2024-12-16
in Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping -
Added resource Original Metadata to Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Haoyu Wang", | 3 | "author": "Haoyu Wang", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2402.07610", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2402.07610", | ||
8 | "doi": "10.57702/geepzxt9", | 8 | "doi": "10.57702/geepzxt9", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Guozheng Ma", | 15 | "extra_author": "Guozheng Ma", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Ziqiao Meng", | 19 | "extra_author": "Ziqiao Meng", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Zeyu Qin", | 23 | "extra_author": "Zeyu Qin", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Li Shen", | 27 | "extra_author": "Li Shen", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Zhong Zhang", | 31 | "extra_author": "Zhong Zhang", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "extra_author": "Bingzhe Wu", | 35 | "extra_author": "Bingzhe Wu", | ||
36 | "orcid": "" | 36 | "orcid": "" | ||
37 | }, | 37 | }, | ||
38 | { | 38 | { | ||
39 | "extra_author": "Liu Liu", | 39 | "extra_author": "Liu Liu", | ||
40 | "orcid": "" | 40 | "orcid": "" | ||
41 | }, | 41 | }, | ||
42 | { | 42 | { | ||
43 | "extra_author": "Yatao Bian", | 43 | "extra_author": "Yatao Bian", | ||
44 | "orcid": "" | 44 | "orcid": "" | ||
45 | }, | 45 | }, | ||
46 | { | 46 | { | ||
47 | "extra_author": "Tingyang Xu", | 47 | "extra_author": "Tingyang Xu", | ||
48 | "orcid": "" | 48 | "orcid": "" | ||
49 | }, | 49 | }, | ||
50 | { | 50 | { | ||
51 | "extra_author": "Xueqian Wang", | 51 | "extra_author": "Xueqian Wang", | ||
52 | "orcid": "" | 52 | "orcid": "" | ||
53 | }, | 53 | }, | ||
54 | { | 54 | { | ||
55 | "extra_author": "Peilin Zhao", | 55 | "extra_author": "Peilin Zhao", | ||
56 | "orcid": "" | 56 | "orcid": "" | ||
57 | } | 57 | } | ||
58 | ], | 58 | ], | ||
59 | "groups": [ | 59 | "groups": [ | ||
60 | { | 60 | { | ||
61 | "description": "", | 61 | "description": "", | ||
62 | "display_name": "Question Answering", | 62 | "display_name": "Question Answering", | ||
63 | "id": "01e9bd6b-910d-421d-bb31-799604023211", | 63 | "id": "01e9bd6b-910d-421d-bb31-799604023211", | ||
64 | "image_display_url": "", | 64 | "image_display_url": "", | ||
65 | "name": "question-answering", | 65 | "name": "question-answering", | ||
66 | "title": "Question Answering" | 66 | "title": "Question Answering" | ||
67 | }, | 67 | }, | ||
68 | { | 68 | { | ||
69 | "description": "", | 69 | "description": "", | ||
70 | "display_name": "Text Classification", | 70 | "display_name": "Text Classification", | ||
71 | "id": "0707d099-de73-41dc-85f6-93e4efa6bf14", | 71 | "id": "0707d099-de73-41dc-85f6-93e4efa6bf14", | ||
72 | "image_display_url": "", | 72 | "image_display_url": "", | ||
73 | "name": "text-classification", | 73 | "name": "text-classification", | ||
74 | "title": "Text Classification" | 74 | "title": "Text Classification" | ||
75 | } | 75 | } | ||
76 | ], | 76 | ], | ||
77 | "id": "7b6f9456-aff4-4d58-a47d-b9a8e4367b43", | 77 | "id": "7b6f9456-aff4-4d58-a47d-b9a8e4367b43", | ||
78 | "isopen": false, | 78 | "isopen": false, | ||
79 | "landing_page": "", | 79 | "landing_page": "", | ||
80 | "license_title": null, | 80 | "license_title": null, | ||
81 | "link_orkg": "", | 81 | "link_orkg": "", | ||
82 | "metadata_created": "2024-12-16T20:26:02.872231", | 82 | "metadata_created": "2024-12-16T20:26:02.872231", | ||
n | 83 | "metadata_modified": "2024-12-16T20:26:02.872237", | n | 83 | "metadata_modified": "2024-12-16T20:26:03.309275", |
84 | "name": | 84 | "name": | ||
85 | tep-on-feet-tuning--scaling-self-alignment-of-llms-via-bootstrapping", | 85 | tep-on-feet-tuning--scaling-self-alignment-of-llms-via-bootstrapping", | ||
86 | "notes": "Self-alignment is an effective way to reduce the cost of | 86 | "notes": "Self-alignment is an effective way to reduce the cost of | ||
87 | human annotation while ensuring promising model capability. This | 87 | human annotation while ensuring promising model capability. This | ||
88 | objective can be achieved from three aspects: (i) high quality data | 88 | objective can be achieved from three aspects: (i) high quality data | ||
89 | generation aspect, (ii) ready-made data utilizing aspect, (iii) model | 89 | generation aspect, (ii) ready-made data utilizing aspect, (iii) model | ||
90 | internal capacity utilizing aspect.", | 90 | internal capacity utilizing aspect.", | ||
n | 91 | "num_resources": 0, | n | 91 | "num_resources": 1, |
92 | "num_tags": 4, | 92 | "num_tags": 4, | ||
93 | "organization": { | 93 | "organization": { | ||
94 | "approval_status": "approved", | 94 | "approval_status": "approved", | ||
95 | "created": "2024-11-25T12:11:38.292601", | 95 | "created": "2024-11-25T12:11:38.292601", | ||
96 | "description": "", | 96 | "description": "", | ||
97 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 97 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
98 | "image_url": "", | 98 | "image_url": "", | ||
99 | "is_organization": true, | 99 | "is_organization": true, | ||
100 | "name": "no-organization", | 100 | "name": "no-organization", | ||
101 | "state": "active", | 101 | "state": "active", | ||
102 | "title": "No Organization", | 102 | "title": "No Organization", | ||
103 | "type": "organization" | 103 | "type": "organization" | ||
104 | }, | 104 | }, | ||
105 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 105 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
106 | "private": false, | 106 | "private": false, | ||
107 | "relationships_as_object": [], | 107 | "relationships_as_object": [], | ||
108 | "relationships_as_subject": [], | 108 | "relationships_as_subject": [], | ||
t | 109 | "resources": [], | t | 109 | "resources": [ |
110 | { | ||||
111 | "cache_last_updated": null, | ||||
112 | "cache_url": null, | ||||
113 | "created": "2024-12-16T18:25:45", | ||||
114 | "data": [ | ||||
115 | "dcterms:title", | ||||
116 | "dcterms:accessRights", | ||||
117 | "dcterms:creator", | ||||
118 | "dcterms:description", | ||||
119 | "dcterms:issued", | ||||
120 | "dcterms:language", | ||||
121 | "dcterms:identifier", | ||||
122 | "dcat:theme", | ||||
123 | "dcterms:type", | ||||
124 | "dcat:keyword", | ||||
125 | "dcat:landingPage", | ||||
126 | "dcterms:hasVersion", | ||||
127 | "dcterms:format", | ||||
128 | "mls:task", | ||||
129 | "datacite:isDescribedBy" | ||||
130 | ], | ||||
131 | "description": "The json representation of the dataset with its | ||||
132 | distributions based on DCAT.", | ||||
133 | "format": "JSON", | ||||
134 | "hash": "", | ||||
135 | "id": "0ba294c9-8687-42d6-a9f5-04fce7137173", | ||||
136 | "last_modified": "2024-12-16T20:26:03.300551", | ||||
137 | "metadata_modified": "2024-12-16T20:26:03.312591", | ||||
138 | "mimetype": "application/json", | ||||
139 | "mimetype_inner": null, | ||||
140 | "name": "Original Metadata", | ||||
141 | "package_id": "7b6f9456-aff4-4d58-a47d-b9a8e4367b43", | ||||
142 | "position": 0, | ||||
143 | "resource_type": null, | ||||
144 | "size": 1072, | ||||
145 | "state": "active", | ||||
146 | "url": | ||||
147 | resource/0ba294c9-8687-42d6-a9f5-04fce7137173/download/metadata.json", | ||||
148 | "url_type": "upload" | ||||
149 | } | ||||
150 | ], | ||||
110 | "services_used_list": "", | 151 | "services_used_list": "", | ||
111 | "state": "active", | 152 | "state": "active", | ||
112 | "tags": [ | 153 | "tags": [ | ||
113 | { | 154 | { | ||
114 | "display_name": "LLMs", | 155 | "display_name": "LLMs", | ||
115 | "id": "61771b29-ae87-4956-bf63-9263311f3ef5", | 156 | "id": "61771b29-ae87-4956-bf63-9263311f3ef5", | ||
116 | "name": "LLMs", | 157 | "name": "LLMs", | ||
117 | "state": "active", | 158 | "state": "active", | ||
118 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
119 | }, | 160 | }, | ||
120 | { | 161 | { | ||
121 | "display_name": "bootstrapping", | 162 | "display_name": "bootstrapping", | ||
122 | "id": "deb123b6-4f28-40bf-a6ee-14b95c1584c9", | 163 | "id": "deb123b6-4f28-40bf-a6ee-14b95c1584c9", | ||
123 | "name": "bootstrapping", | 164 | "name": "bootstrapping", | ||
124 | "state": "active", | 165 | "state": "active", | ||
125 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
126 | }, | 167 | }, | ||
127 | { | 168 | { | ||
128 | "display_name": "data diversity", | 169 | "display_name": "data diversity", | ||
129 | "id": "4a8030dc-77c2-47eb-883b-9318dc45bc16", | 170 | "id": "4a8030dc-77c2-47eb-883b-9318dc45bc16", | ||
130 | "name": "data diversity", | 171 | "name": "data diversity", | ||
131 | "state": "active", | 172 | "state": "active", | ||
132 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
133 | }, | 174 | }, | ||
134 | { | 175 | { | ||
135 | "display_name": "self-alignment", | 176 | "display_name": "self-alignment", | ||
136 | "id": "ccf4f34f-4eb7-487c-a518-8591736c1add", | 177 | "id": "ccf4f34f-4eb7-487c-a518-8591736c1add", | ||
137 | "name": "self-alignment", | 178 | "name": "self-alignment", | ||
138 | "state": "active", | 179 | "state": "active", | ||
139 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
140 | } | 181 | } | ||
141 | ], | 182 | ], | ||
142 | "title": "Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via | 183 | "title": "Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via | ||
143 | Bootstrapping", | 184 | Bootstrapping", | ||
144 | "type": "dataset", | 185 | "type": "dataset", | ||
145 | "version": "" | 186 | "version": "" | ||
146 | } | 187 | } |