Changes
On December 3, 2024 at 10:31:21 AM UTC, admin:
-
Changed value of field
doi_date_published
to2024-12-03
in Angular Super-Resolution in Diffusion MRI with a 3D Recurrent Convolutional Autoencoder -
Changed value of field
doi_status
toTrue
in Angular Super-Resolution in Diffusion MRI with a 3D Recurrent Convolutional Autoencoder -
Added resource Original Metadata to Angular Super-Resolution in Diffusion MRI with a 3D Recurrent Convolutional Autoencoder
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Matthew Lyon", | 3 | "author": "Matthew Lyon", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2203.15598", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2203.15598", | ||
8 | "doi": "10.57702/4nmc4bku", | 8 | "doi": "10.57702/4nmc4bku", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Paul Armitage", | 15 | "extra_author": "Paul Armitage", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Mauricio A \u00b4Alvarez", | 19 | "extra_author": "Mauricio A \u00b4Alvarez", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Angular super-resolution", | 26 | "display_name": "Angular super-resolution", | ||
27 | "id": "389aa901-d395-44dc-a266-d087ec392808", | 27 | "id": "389aa901-d395-44dc-a266-d087ec392808", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "angular-super-resolution", | 29 | "name": "angular-super-resolution", | ||
30 | "title": "Angular super-resolution" | 30 | "title": "Angular super-resolution" | ||
31 | }, | 31 | }, | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Deep Learning", | 34 | "display_name": "Deep Learning", | ||
35 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | 35 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "deep-learning", | 37 | "name": "deep-learning", | ||
38 | "title": "Deep Learning" | 38 | "title": "Deep Learning" | ||
39 | } | 39 | } | ||
40 | ], | 40 | ], | ||
41 | "id": "2d1dc1f4-5436-4853-be5d-faf48b0dca75", | 41 | "id": "2d1dc1f4-5436-4853-be5d-faf48b0dca75", | ||
42 | "isopen": false, | 42 | "isopen": false, | ||
43 | "landing_page": "https://doi.org/10.18637/jss.2022.001", | 43 | "landing_page": "https://doi.org/10.18637/jss.2022.001", | ||
44 | "license_title": null, | 44 | "license_title": null, | ||
45 | "link_orkg": "", | 45 | "link_orkg": "", | ||
46 | "metadata_created": "2024-12-03T10:31:19.733703", | 46 | "metadata_created": "2024-12-03T10:31:19.733703", | ||
n | 47 | "metadata_modified": "2024-12-03T10:31:19.733708", | n | 47 | "metadata_modified": "2024-12-03T10:31:20.062676", |
48 | "name": | 48 | "name": | ||
49 | lution-in-di-usion-mri-with-a-3d-recurrent-convolutional-autoencoder", | 49 | lution-in-di-usion-mri-with-a-3d-recurrent-convolutional-autoencoder", | ||
50 | "notes": "High resolution di\ufb00usion MRI (dMRI) data is often | 50 | "notes": "High resolution di\ufb00usion MRI (dMRI) data is often | ||
51 | constrained by limited scanning time in clinical settings, thus | 51 | constrained by limited scanning time in clinical settings, thus | ||
52 | restricting the use of downstream analysis techniques that would | 52 | restricting the use of downstream analysis techniques that would | ||
53 | otherwise be available.", | 53 | otherwise be available.", | ||
n | 54 | "num_resources": 0, | n | 54 | "num_resources": 1, |
55 | "num_tags": 3, | 55 | "num_tags": 3, | ||
56 | "organization": { | 56 | "organization": { | ||
57 | "approval_status": "approved", | 57 | "approval_status": "approved", | ||
58 | "created": "2024-11-25T12:11:38.292601", | 58 | "created": "2024-11-25T12:11:38.292601", | ||
59 | "description": "", | 59 | "description": "", | ||
60 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 60 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
61 | "image_url": "", | 61 | "image_url": "", | ||
62 | "is_organization": true, | 62 | "is_organization": true, | ||
63 | "name": "no-organization", | 63 | "name": "no-organization", | ||
64 | "state": "active", | 64 | "state": "active", | ||
65 | "title": "No Organization", | 65 | "title": "No Organization", | ||
66 | "type": "organization" | 66 | "type": "organization" | ||
67 | }, | 67 | }, | ||
68 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 68 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
69 | "private": false, | 69 | "private": false, | ||
70 | "relationships_as_object": [], | 70 | "relationships_as_object": [], | ||
71 | "relationships_as_subject": [], | 71 | "relationships_as_subject": [], | ||
t | 72 | "resources": [], | t | 72 | "resources": [ |
73 | { | ||||
74 | "cache_last_updated": null, | ||||
75 | "cache_url": null, | ||||
76 | "created": "2024-12-03T11:31:02", | ||||
77 | "data": [ | ||||
78 | "dcterms:title", | ||||
79 | "dcterms:accessRights", | ||||
80 | "dcterms:creator", | ||||
81 | "dcterms:description", | ||||
82 | "dcterms:issued", | ||||
83 | "dcterms:language", | ||||
84 | "dcterms:identifier", | ||||
85 | "dcat:theme", | ||||
86 | "dcterms:type", | ||||
87 | "dcat:keyword", | ||||
88 | "dcat:landingPage", | ||||
89 | "dcterms:hasVersion", | ||||
90 | "dcterms:format", | ||||
91 | "mls:task", | ||||
92 | "datacite:isDescribedBy" | ||||
93 | ], | ||||
94 | "description": "The json representation of the dataset with its | ||||
95 | distributions based on DCAT.", | ||||
96 | "format": "JSON", | ||||
97 | "hash": "", | ||||
98 | "id": "ec339b8d-c32a-4ae7-ab0b-9cbc3c619849", | ||||
99 | "last_modified": "2024-12-03T10:31:20.055052", | ||||
100 | "metadata_modified": "2024-12-03T10:31:20.065762", | ||||
101 | "mimetype": "application/json", | ||||
102 | "mimetype_inner": null, | ||||
103 | "name": "Original Metadata", | ||||
104 | "package_id": "2d1dc1f4-5436-4853-be5d-faf48b0dca75", | ||||
105 | "position": 0, | ||||
106 | "resource_type": null, | ||||
107 | "size": 983, | ||||
108 | "state": "active", | ||||
109 | "url": | ||||
110 | resource/ec339b8d-c32a-4ae7-ab0b-9cbc3c619849/download/metadata.json", | ||||
111 | "url_type": "upload" | ||||
112 | } | ||||
113 | ], | ||||
73 | "services_used_list": "", | 114 | "services_used_list": "", | ||
74 | "state": "active", | 115 | "state": "active", | ||
75 | "tags": [ | 116 | "tags": [ | ||
76 | { | 117 | { | ||
77 | "display_name": "Angular super-resolution", | 118 | "display_name": "Angular super-resolution", | ||
78 | "id": "cd0a3c8a-fb4a-4c76-b679-b44b028db212", | 119 | "id": "cd0a3c8a-fb4a-4c76-b679-b44b028db212", | ||
79 | "name": "Angular super-resolution", | 120 | "name": "Angular super-resolution", | ||
80 | "state": "active", | 121 | "state": "active", | ||
81 | "vocabulary_id": null | 122 | "vocabulary_id": null | ||
82 | }, | 123 | }, | ||
83 | { | 124 | { | ||
84 | "display_name": "Deep Learning", | 125 | "display_name": "Deep Learning", | ||
85 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | 126 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | ||
86 | "name": "Deep Learning", | 127 | "name": "Deep Learning", | ||
87 | "state": "active", | 128 | "state": "active", | ||
88 | "vocabulary_id": null | 129 | "vocabulary_id": null | ||
89 | }, | 130 | }, | ||
90 | { | 131 | { | ||
91 | "display_name": "di\ufb00usion MRI", | 132 | "display_name": "di\ufb00usion MRI", | ||
92 | "id": "1c82a5a2-0720-4cd3-8170-c48d7fe021a5", | 133 | "id": "1c82a5a2-0720-4cd3-8170-c48d7fe021a5", | ||
93 | "name": "di\ufb00usion MRI", | 134 | "name": "di\ufb00usion MRI", | ||
94 | "state": "active", | 135 | "state": "active", | ||
95 | "vocabulary_id": null | 136 | "vocabulary_id": null | ||
96 | } | 137 | } | ||
97 | ], | 138 | ], | ||
98 | "title": "Angular Super-Resolution in Di\ufb00usion MRI with a 3D | 139 | "title": "Angular Super-Resolution in Di\ufb00usion MRI with a 3D | ||
99 | Recurrent Convolutional Autoencoder", | 140 | Recurrent Convolutional Autoencoder", | ||
100 | "type": "dataset", | 141 | "type": "dataset", | ||
101 | "version": "" | 142 | "version": "" | ||
102 | } | 143 | } |