Changes
On December 2, 2024 at 11:48:19 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing -
Changed value of field
doi_date_published
to2024-12-02
in Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing -
Added resource Original Metadata to Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Hiba Najjar", | 3 | "author": "Hiba Najjar", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/00jqeiia", | 8 | "doi": "10.57702/00jqeiia", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Miro Miranda", | 15 | "extra_author": "Miro Miranda", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Marlon Nuske", | 19 | "extra_author": "Marlon Nuske", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Ribana Roscher", | 23 | "extra_author": "Ribana Roscher", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Andreas Dengel", | 27 | "extra_author": "Andreas Dengel", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [ | 31 | "groups": [ | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Crop Yield Prediction", | 34 | "display_name": "Crop Yield Prediction", | ||
35 | "id": "41893ca9-d829-489f-8d9b-b14e68d8adab", | 35 | "id": "41893ca9-d829-489f-8d9b-b14e68d8adab", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "crop-yield-prediction", | 37 | "name": "crop-yield-prediction", | ||
38 | "title": "Crop Yield Prediction" | 38 | "title": "Crop Yield Prediction" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Remote Sensing", | 42 | "display_name": "Remote Sensing", | ||
43 | "id": "65a8c4ed-5eba-47b4-9f25-1d56d58b3dad", | 43 | "id": "65a8c4ed-5eba-47b4-9f25-1d56d58b3dad", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "remote-sensing", | 45 | "name": "remote-sensing", | ||
46 | "title": "Remote Sensing" | 46 | "title": "Remote Sensing" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "5f4b4957-246d-4800-a634-36d467e8cd4a", | 49 | "id": "5f4b4957-246d-4800-a634-36d467e8cd4a", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "", | 51 | "landing_page": "", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2024-12-02T23:48:17.843094", | 54 | "metadata_created": "2024-12-02T23:48:17.843094", | ||
n | 55 | "metadata_modified": "2024-12-02T23:48:17.843099", | n | 55 | "metadata_modified": "2024-12-02T23:48:18.434148", |
56 | "name": | 56 | "name": | ||
57 | bility-of-sub-field-level-crop-yield-prediction-using-remote-sensing", | 57 | bility-of-sub-field-level-crop-yield-prediction-using-remote-sensing", | ||
58 | "notes": "Crop yield forecasting plays a significant role in | 58 | "notes": "Crop yield forecasting plays a significant role in | ||
59 | addressing growing concerns about food security and guiding | 59 | addressing growing concerns about food security and guiding | ||
60 | decision-making for policymakers and farmers. The dataset is used for | 60 | decision-making for policymakers and farmers. The dataset is used for | ||
61 | crop yield prediction, specifically for soybean, wheat, and rapeseed | 61 | crop yield prediction, specifically for soybean, wheat, and rapeseed | ||
62 | crops in Argentina, Uruguay, and Germany.", | 62 | crops in Argentina, Uruguay, and Germany.", | ||
n | 63 | "num_resources": 0, | n | 63 | "num_resources": 1, |
64 | "num_tags": 4, | 64 | "num_tags": 4, | ||
65 | "organization": { | 65 | "organization": { | ||
66 | "approval_status": "approved", | 66 | "approval_status": "approved", | ||
67 | "created": "2024-11-25T12:11:38.292601", | 67 | "created": "2024-11-25T12:11:38.292601", | ||
68 | "description": "", | 68 | "description": "", | ||
69 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 69 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
70 | "image_url": "", | 70 | "image_url": "", | ||
71 | "is_organization": true, | 71 | "is_organization": true, | ||
72 | "name": "no-organization", | 72 | "name": "no-organization", | ||
73 | "state": "active", | 73 | "state": "active", | ||
74 | "title": "No Organization", | 74 | "title": "No Organization", | ||
75 | "type": "organization" | 75 | "type": "organization" | ||
76 | }, | 76 | }, | ||
77 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 77 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
78 | "private": false, | 78 | "private": false, | ||
79 | "relationships_as_object": [], | 79 | "relationships_as_object": [], | ||
80 | "relationships_as_subject": [], | 80 | "relationships_as_subject": [], | ||
t | 81 | "resources": [], | t | 81 | "resources": [ |
82 | { | ||||
83 | "cache_last_updated": null, | ||||
84 | "cache_url": null, | ||||
85 | "created": "2024-12-03T00:20:35", | ||||
86 | "data": [ | ||||
87 | "dcterms:title", | ||||
88 | "dcterms:accessRights", | ||||
89 | "dcterms:creator", | ||||
90 | "dcterms:description", | ||||
91 | "dcterms:issued", | ||||
92 | "dcterms:language", | ||||
93 | "dcterms:identifier", | ||||
94 | "dcat:theme", | ||||
95 | "dcterms:type", | ||||
96 | "dcat:keyword", | ||||
97 | "dcat:landingPage", | ||||
98 | "dcterms:hasVersion", | ||||
99 | "dcterms:format", | ||||
100 | "mls:task" | ||||
101 | ], | ||||
102 | "description": "The json representation of the dataset with its | ||||
103 | distributions based on DCAT.", | ||||
104 | "format": "JSON", | ||||
105 | "hash": "", | ||||
106 | "id": "9249aaaa-c678-40cf-bc96-ebf354773148", | ||||
107 | "last_modified": "2024-12-02T23:48:18.425843", | ||||
108 | "metadata_modified": "2024-12-02T23:48:18.436946", | ||||
109 | "mimetype": "application/json", | ||||
110 | "mimetype_inner": null, | ||||
111 | "name": "Original Metadata", | ||||
112 | "package_id": "5f4b4957-246d-4800-a634-36d467e8cd4a", | ||||
113 | "position": 0, | ||||
114 | "resource_type": null, | ||||
115 | "size": 931, | ||||
116 | "state": "active", | ||||
117 | "url": | ||||
118 | resource/9249aaaa-c678-40cf-bc96-ebf354773148/download/metadata.json", | ||||
119 | "url_type": "upload" | ||||
120 | } | ||||
121 | ], | ||||
82 | "services_used_list": "", | 122 | "services_used_list": "", | ||
83 | "state": "active", | 123 | "state": "active", | ||
84 | "tags": [ | 124 | "tags": [ | ||
85 | { | 125 | { | ||
86 | "display_name": "Crop Yield Prediction", | 126 | "display_name": "Crop Yield Prediction", | ||
87 | "id": "8d0ffe6f-e883-4b9c-a4f9-6c8ddd0959db", | 127 | "id": "8d0ffe6f-e883-4b9c-a4f9-6c8ddd0959db", | ||
88 | "name": "Crop Yield Prediction", | 128 | "name": "Crop Yield Prediction", | ||
89 | "state": "active", | 129 | "state": "active", | ||
90 | "vocabulary_id": null | 130 | "vocabulary_id": null | ||
91 | }, | 131 | }, | ||
92 | { | 132 | { | ||
93 | "display_name": "Explainability", | 133 | "display_name": "Explainability", | ||
94 | "id": "7519500a-c04e-4e5a-bd54-e7797f3b274f", | 134 | "id": "7519500a-c04e-4e5a-bd54-e7797f3b274f", | ||
95 | "name": "Explainability", | 135 | "name": "Explainability", | ||
96 | "state": "active", | 136 | "state": "active", | ||
97 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
98 | }, | 138 | }, | ||
99 | { | 139 | { | ||
100 | "display_name": "Remote Sensing", | 140 | "display_name": "Remote Sensing", | ||
101 | "id": "d5087db2-baa3-4aa5-bf19-a75154d99f42", | 141 | "id": "d5087db2-baa3-4aa5-bf19-a75154d99f42", | ||
102 | "name": "Remote Sensing", | 142 | "name": "Remote Sensing", | ||
103 | "state": "active", | 143 | "state": "active", | ||
104 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
105 | }, | 145 | }, | ||
106 | { | 146 | { | ||
107 | "display_name": "Sub-Field Level", | 147 | "display_name": "Sub-Field Level", | ||
108 | "id": "0e40575d-6507-4269-8969-bd45527bb186", | 148 | "id": "0e40575d-6507-4269-8969-bd45527bb186", | ||
109 | "name": "Sub-Field Level", | 149 | "name": "Sub-Field Level", | ||
110 | "state": "active", | 150 | "state": "active", | ||
111 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
112 | } | 152 | } | ||
113 | ], | 153 | ], | ||
114 | "title": "Explainability of Sub-Field Level Crop Yield Prediction | 154 | "title": "Explainability of Sub-Field Level Crop Yield Prediction | ||
115 | using Remote Sensing", | 155 | using Remote Sensing", | ||
116 | "type": "dataset", | 156 | "type": "dataset", | ||
117 | "version": "" | 157 | "version": "" | ||
118 | } | 158 | } |