Changes
On December 3, 2024 at 10:19:47 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Adaptive Graph Convolution Networks for Traffic Flow Forecasting -
Changed value of field
doi_date_published
to2024-12-03
in Adaptive Graph Convolution Networks for Traffic Flow Forecasting -
Added resource Original Metadata to Adaptive Graph Convolution Networks for Traffic Flow Forecasting
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Zhengdao Li", | 3 | "author": "Zhengdao Li", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2307.05517", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2307.05517", | ||
8 | "doi": "10.57702/3ncedg73", | 8 | "doi": "10.57702/3ncedg73", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Wei Li", | 15 | "extra_author": "Wei Li", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Kai Hwang", | 19 | "extra_author": "Kai Hwang", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Traffic Flow Forecasting", | 26 | "display_name": "Traffic Flow Forecasting", | ||
27 | "id": "3e9661b1-3f4d-402b-a80e-a74b3e609830", | 27 | "id": "3e9661b1-3f4d-402b-a80e-a74b3e609830", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "traffic-flow-forecasting", | 29 | "name": "traffic-flow-forecasting", | ||
30 | "title": "Traffic Flow Forecasting" | 30 | "title": "Traffic Flow Forecasting" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "f301c9c9-d5d4-4211-ae91-361b3dca890d", | 33 | "id": "f301c9c9-d5d4-4211-ae91-361b3dca890d", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "landing_page": "https://github.com/zhengdaoli/AGC-net", | 35 | "landing_page": "https://github.com/zhengdaoli/AGC-net", | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "link_orkg": "", | 37 | "link_orkg": "", | ||
38 | "metadata_created": "2024-12-03T10:19:46.461067", | 38 | "metadata_created": "2024-12-03T10:19:46.461067", | ||
n | 39 | "metadata_modified": "2024-12-03T10:19:46.461071", | n | 39 | "metadata_modified": "2024-12-03T10:19:46.803989", |
40 | "name": | 40 | "name": | ||
41 | "adaptive-graph-convolution-networks-for-traffic-flow-forecasting", | 41 | "adaptive-graph-convolution-networks-for-traffic-flow-forecasting", | ||
42 | "notes": "Traffic flow forecasting is a highly challenging task due | 42 | "notes": "Traffic flow forecasting is a highly challenging task due | ||
43 | to the dynamic spatial-temporal road conditions. Graph neural networks | 43 | to the dynamic spatial-temporal road conditions. Graph neural networks | ||
44 | (GNN) has been widely applied in this task. However, most of these | 44 | (GNN) has been widely applied in this task. However, most of these | ||
45 | GNNs ignore the effects of time-varying road conditions due to the | 45 | GNNs ignore the effects of time-varying road conditions due to the | ||
46 | fixed range of the convolution receptive field.", | 46 | fixed range of the convolution receptive field.", | ||
n | 47 | "num_resources": 0, | n | 47 | "num_resources": 1, |
48 | "num_tags": 3, | 48 | "num_tags": 3, | ||
49 | "organization": { | 49 | "organization": { | ||
50 | "approval_status": "approved", | 50 | "approval_status": "approved", | ||
51 | "created": "2024-11-25T12:11:38.292601", | 51 | "created": "2024-11-25T12:11:38.292601", | ||
52 | "description": "", | 52 | "description": "", | ||
53 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 53 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
54 | "image_url": "", | 54 | "image_url": "", | ||
55 | "is_organization": true, | 55 | "is_organization": true, | ||
56 | "name": "no-organization", | 56 | "name": "no-organization", | ||
57 | "state": "active", | 57 | "state": "active", | ||
58 | "title": "No Organization", | 58 | "title": "No Organization", | ||
59 | "type": "organization" | 59 | "type": "organization" | ||
60 | }, | 60 | }, | ||
61 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 61 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
62 | "private": false, | 62 | "private": false, | ||
63 | "relationships_as_object": [], | 63 | "relationships_as_object": [], | ||
64 | "relationships_as_subject": [], | 64 | "relationships_as_subject": [], | ||
t | 65 | "resources": [], | t | 65 | "resources": [ |
66 | { | ||||
67 | "cache_last_updated": null, | ||||
68 | "cache_url": null, | ||||
69 | "created": "2024-12-03T11:11:17", | ||||
70 | "data": [ | ||||
71 | "dcterms:title", | ||||
72 | "dcterms:accessRights", | ||||
73 | "dcterms:creator", | ||||
74 | "dcterms:description", | ||||
75 | "dcterms:issued", | ||||
76 | "dcterms:language", | ||||
77 | "dcterms:identifier", | ||||
78 | "dcat:theme", | ||||
79 | "dcterms:type", | ||||
80 | "dcat:keyword", | ||||
81 | "dcat:landingPage", | ||||
82 | "dcterms:hasVersion", | ||||
83 | "dcterms:format", | ||||
84 | "mls:task", | ||||
85 | "datacite:isDescribedBy" | ||||
86 | ], | ||||
87 | "description": "The json representation of the dataset with its | ||||
88 | distributions based on DCAT.", | ||||
89 | "format": "JSON", | ||||
90 | "hash": "", | ||||
91 | "id": "693bade9-100f-4e16-9062-b8a7bbbeeda1", | ||||
92 | "last_modified": "2024-12-03T10:19:46.796785", | ||||
93 | "metadata_modified": "2024-12-03T10:19:46.806862", | ||||
94 | "mimetype": "application/json", | ||||
95 | "mimetype_inner": null, | ||||
96 | "name": "Original Metadata", | ||||
97 | "package_id": "f301c9c9-d5d4-4211-ae91-361b3dca890d", | ||||
98 | "position": 0, | ||||
99 | "resource_type": null, | ||||
100 | "size": 980, | ||||
101 | "state": "active", | ||||
102 | "url": | ||||
103 | resource/693bade9-100f-4e16-9062-b8a7bbbeeda1/download/metadata.json", | ||||
104 | "url_type": "upload" | ||||
105 | } | ||||
106 | ], | ||||
66 | "services_used_list": "", | 107 | "services_used_list": "", | ||
67 | "state": "active", | 108 | "state": "active", | ||
68 | "tags": [ | 109 | "tags": [ | ||
69 | { | 110 | { | ||
70 | "display_name": "graph neural networks", | 111 | "display_name": "graph neural networks", | ||
71 | "id": "3307d46c-fe4e-4ec3-a460-3b75a23f9bb3", | 112 | "id": "3307d46c-fe4e-4ec3-a460-3b75a23f9bb3", | ||
72 | "name": "graph neural networks", | 113 | "name": "graph neural networks", | ||
73 | "state": "active", | 114 | "state": "active", | ||
74 | "vocabulary_id": null | 115 | "vocabulary_id": null | ||
75 | }, | 116 | }, | ||
76 | { | 117 | { | ||
77 | "display_name": "time-varying road conditions", | 118 | "display_name": "time-varying road conditions", | ||
78 | "id": "b37c0097-34af-49d4-bfb3-d446cc4e3c1b", | 119 | "id": "b37c0097-34af-49d4-bfb3-d446cc4e3c1b", | ||
79 | "name": "time-varying road conditions", | 120 | "name": "time-varying road conditions", | ||
80 | "state": "active", | 121 | "state": "active", | ||
81 | "vocabulary_id": null | 122 | "vocabulary_id": null | ||
82 | }, | 123 | }, | ||
83 | { | 124 | { | ||
84 | "display_name": "traffic flow forecasting", | 125 | "display_name": "traffic flow forecasting", | ||
85 | "id": "82445629-4701-4c32-88d1-a3fa79eee946", | 126 | "id": "82445629-4701-4c32-88d1-a3fa79eee946", | ||
86 | "name": "traffic flow forecasting", | 127 | "name": "traffic flow forecasting", | ||
87 | "state": "active", | 128 | "state": "active", | ||
88 | "vocabulary_id": null | 129 | "vocabulary_id": null | ||
89 | } | 130 | } | ||
90 | ], | 131 | ], | ||
91 | "title": "Adaptive Graph Convolution Networks for Traffic Flow | 132 | "title": "Adaptive Graph Convolution Networks for Traffic Flow | ||
92 | Forecasting", | 133 | Forecasting", | ||
93 | "type": "dataset", | 134 | "type": "dataset", | ||
94 | "version": "" | 135 | "version": "" | ||
95 | } | 136 | } |