Changes
On December 16, 2024 at 7:55:26 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics -
Changed value of field
doi_date_published
to2024-12-16
in Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics -
Added resource Original Metadata to Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Leon Klein", | 3 | "author": "Leon Klein", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2302.01170", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2302.01170", | ||
8 | "doi": "10.57702/gj3ib2xq", | 8 | "doi": "10.57702/gj3ib2xq", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Andrew Y. K. Foong", | 15 | "extra_author": "Andrew Y. K. Foong", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Tor Erlend Fjelde", | 19 | "extra_author": "Tor Erlend Fjelde", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Bruno Mlodozeniec", | 23 | "extra_author": "Bruno Mlodozeniec", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Marc Brockschmidt", | 27 | "extra_author": "Marc Brockschmidt", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Sebastian Nowozin", | 31 | "extra_author": "Sebastian Nowozin", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "extra_author": "Frank No\u00e9", | 35 | "extra_author": "Frank No\u00e9", | ||
36 | "orcid": "" | 36 | "orcid": "" | ||
37 | }, | 37 | }, | ||
38 | { | 38 | { | ||
39 | "extra_author": "Ryota Tomioka", | 39 | "extra_author": "Ryota Tomioka", | ||
40 | "orcid": "" | 40 | "orcid": "" | ||
41 | } | 41 | } | ||
42 | ], | 42 | ], | ||
43 | "groups": [ | 43 | "groups": [ | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Machine Learning", | 46 | "display_name": "Machine Learning", | ||
47 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | 47 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "machine-learning", | 49 | "name": "machine-learning", | ||
50 | "title": "Machine Learning" | 50 | "title": "Machine Learning" | ||
51 | }, | 51 | }, | ||
52 | { | 52 | { | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "display_name": "Molecular Dynamics", | 54 | "display_name": "Molecular Dynamics", | ||
55 | "id": "f65a2f63-8ebc-45ae-80f0-3e132b50f26b", | 55 | "id": "f65a2f63-8ebc-45ae-80f0-3e132b50f26b", | ||
56 | "image_display_url": "", | 56 | "image_display_url": "", | ||
57 | "name": "molecular-dynamics", | 57 | "name": "molecular-dynamics", | ||
58 | "title": "Molecular Dynamics" | 58 | "title": "Molecular Dynamics" | ||
59 | }, | 59 | }, | ||
60 | { | 60 | { | ||
61 | "description": "", | 61 | "description": "", | ||
62 | "display_name": "Transferability", | 62 | "display_name": "Transferability", | ||
63 | "id": "27f95f92-dd73-4a2c-854c-61c4b7dc9a45", | 63 | "id": "27f95f92-dd73-4a2c-854c-61c4b7dc9a45", | ||
64 | "image_display_url": "", | 64 | "image_display_url": "", | ||
65 | "name": "transferability", | 65 | "name": "transferability", | ||
66 | "title": "Transferability" | 66 | "title": "Transferability" | ||
67 | } | 67 | } | ||
68 | ], | 68 | ], | ||
69 | "id": "fafe753e-cef9-4c90-9c12-c4c80ad58b9d", | 69 | "id": "fafe753e-cef9-4c90-9c12-c4c80ad58b9d", | ||
70 | "isopen": false, | 70 | "isopen": false, | ||
71 | "landing_page": "https://github.com/microsoft/timewarp", | 71 | "landing_page": "https://github.com/microsoft/timewarp", | ||
72 | "license_title": null, | 72 | "license_title": null, | ||
73 | "link_orkg": "", | 73 | "link_orkg": "", | ||
74 | "metadata_created": "2024-12-16T19:55:24.166234", | 74 | "metadata_created": "2024-12-16T19:55:24.166234", | ||
n | 75 | "metadata_modified": "2024-12-16T19:55:24.166240", | n | 75 | "metadata_modified": "2024-12-16T19:55:25.064540", |
76 | "name": | 76 | "name": | ||
77 | celeration-of-molecular-dynamics-by-learning-time-coarsened-dynamics", | 77 | celeration-of-molecular-dynamics-by-learning-time-coarsened-dynamics", | ||
78 | "notes": "Molecular dynamics (MD) simulation is a widely used | 78 | "notes": "Molecular dynamics (MD) simulation is a widely used | ||
79 | technique to simulate molecular systems, most commonly at the all-atom | 79 | technique to simulate molecular systems, most commonly at the all-atom | ||
80 | resolution where equations of motion are integrated with timesteps on | 80 | resolution where equations of motion are integrated with timesteps on | ||
81 | the order of femtoseconds (1fs = 10\u221215s). MD is often used to | 81 | the order of femtoseconds (1fs = 10\u221215s). MD is often used to | ||
82 | compute equilibrium properties, which requires sampling from an | 82 | compute equilibrium properties, which requires sampling from an | ||
83 | equilibrium distribution such as the Boltzmann distribution.", | 83 | equilibrium distribution such as the Boltzmann distribution.", | ||
n | 84 | "num_resources": 0, | n | 84 | "num_resources": 1, |
85 | "num_tags": 5, | 85 | "num_tags": 5, | ||
86 | "organization": { | 86 | "organization": { | ||
87 | "approval_status": "approved", | 87 | "approval_status": "approved", | ||
88 | "created": "2024-11-25T12:11:38.292601", | 88 | "created": "2024-11-25T12:11:38.292601", | ||
89 | "description": "", | 89 | "description": "", | ||
90 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 90 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
91 | "image_url": "", | 91 | "image_url": "", | ||
92 | "is_organization": true, | 92 | "is_organization": true, | ||
93 | "name": "no-organization", | 93 | "name": "no-organization", | ||
94 | "state": "active", | 94 | "state": "active", | ||
95 | "title": "No Organization", | 95 | "title": "No Organization", | ||
96 | "type": "organization" | 96 | "type": "organization" | ||
97 | }, | 97 | }, | ||
98 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 98 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
99 | "private": false, | 99 | "private": false, | ||
100 | "relationships_as_object": [], | 100 | "relationships_as_object": [], | ||
101 | "relationships_as_subject": [], | 101 | "relationships_as_subject": [], | ||
t | 102 | "resources": [], | t | 102 | "resources": [ |
103 | { | ||||
104 | "cache_last_updated": null, | ||||
105 | "cache_url": null, | ||||
106 | "created": "2024-12-16T18:25:43", | ||||
107 | "data": [ | ||||
108 | "dcterms:title", | ||||
109 | "dcterms:accessRights", | ||||
110 | "dcterms:creator", | ||||
111 | "dcterms:description", | ||||
112 | "dcterms:issued", | ||||
113 | "dcterms:language", | ||||
114 | "dcterms:identifier", | ||||
115 | "dcat:theme", | ||||
116 | "dcterms:type", | ||||
117 | "dcat:keyword", | ||||
118 | "dcat:landingPage", | ||||
119 | "dcterms:hasVersion", | ||||
120 | "dcterms:format", | ||||
121 | "mls:task", | ||||
122 | "datacite:isDescribedBy" | ||||
123 | ], | ||||
124 | "description": "The json representation of the dataset with its | ||||
125 | distributions based on DCAT.", | ||||
126 | "format": "JSON", | ||||
127 | "hash": "", | ||||
128 | "id": "36ae5ef4-4855-43ed-9ea4-af8ff1f53594", | ||||
129 | "last_modified": "2024-12-16T19:55:25.056522", | ||||
130 | "metadata_modified": "2024-12-16T19:55:25.067466", | ||||
131 | "mimetype": "application/json", | ||||
132 | "mimetype_inner": null, | ||||
133 | "name": "Original Metadata", | ||||
134 | "package_id": "fafe753e-cef9-4c90-9c12-c4c80ad58b9d", | ||||
135 | "position": 0, | ||||
136 | "resource_type": null, | ||||
137 | "size": 1329, | ||||
138 | "state": "active", | ||||
139 | "url": | ||||
140 | resource/36ae5ef4-4855-43ed-9ea4-af8ff1f53594/download/metadata.json", | ||||
141 | "url_type": "upload" | ||||
142 | } | ||||
143 | ], | ||||
103 | "services_used_list": "", | 144 | "services_used_list": "", | ||
104 | "state": "active", | 145 | "state": "active", | ||
105 | "tags": [ | 146 | "tags": [ | ||
106 | { | 147 | { | ||
107 | "display_name": "Boltzmann Distribution", | 148 | "display_name": "Boltzmann Distribution", | ||
108 | "id": "dbd5b54c-4654-4ada-a70f-9464577a18a4", | 149 | "id": "dbd5b54c-4654-4ada-a70f-9464577a18a4", | ||
109 | "name": "Boltzmann Distribution", | 150 | "name": "Boltzmann Distribution", | ||
110 | "state": "active", | 151 | "state": "active", | ||
111 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
112 | }, | 153 | }, | ||
113 | { | 154 | { | ||
114 | "display_name": "Machine Learning", | 155 | "display_name": "Machine Learning", | ||
115 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | 156 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | ||
116 | "name": "Machine Learning", | 157 | "name": "Machine Learning", | ||
117 | "state": "active", | 158 | "state": "active", | ||
118 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
119 | }, | 160 | }, | ||
120 | { | 161 | { | ||
121 | "display_name": "Markov Chain Monte Carlo", | 162 | "display_name": "Markov Chain Monte Carlo", | ||
122 | "id": "d2146165-c660-4e8c-846a-b122696ca32c", | 163 | "id": "d2146165-c660-4e8c-846a-b122696ca32c", | ||
123 | "name": "Markov Chain Monte Carlo", | 164 | "name": "Markov Chain Monte Carlo", | ||
124 | "state": "active", | 165 | "state": "active", | ||
125 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
126 | }, | 167 | }, | ||
127 | { | 168 | { | ||
128 | "display_name": "Molecular Dynamics", | 169 | "display_name": "Molecular Dynamics", | ||
129 | "id": "3e042b83-591c-4e1f-9be8-10a601f890e2", | 170 | "id": "3e042b83-591c-4e1f-9be8-10a601f890e2", | ||
130 | "name": "Molecular Dynamics", | 171 | "name": "Molecular Dynamics", | ||
131 | "state": "active", | 172 | "state": "active", | ||
132 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
133 | }, | 174 | }, | ||
134 | { | 175 | { | ||
135 | "display_name": "Transferability", | 176 | "display_name": "Transferability", | ||
136 | "id": "7294b9c8-4f5c-4f71-8459-5a93cbfe848c", | 177 | "id": "7294b9c8-4f5c-4f71-8459-5a93cbfe848c", | ||
137 | "name": "Transferability", | 178 | "name": "Transferability", | ||
138 | "state": "active", | 179 | "state": "active", | ||
139 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
140 | } | 181 | } | ||
141 | ], | 182 | ], | ||
142 | "title": "Timewarp: Transferable Acceleration of Molecular Dynamics | 183 | "title": "Timewarp: Transferable Acceleration of Molecular Dynamics | ||
143 | by Learning Time-Coarsened Dynamics", | 184 | by Learning Time-Coarsened Dynamics", | ||
144 | "type": "dataset", | 185 | "type": "dataset", | ||
145 | "version": "" | 186 | "version": "" | ||
146 | } | 187 | } |