Changes
On December 16, 2024 at 6:13:57 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Adversarially Regularized Graph Autoencoder for Graph Embedding -
Changed value of field
doi_date_published
to2024-12-16
in Adversarially Regularized Graph Autoencoder for Graph Embedding -
Added resource Original Metadata to Adversarially Regularized Graph Autoencoder for Graph Embedding
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Shirui Pan", | 3 | "author": "Shirui Pan", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.1802.04407", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.1802.04407", | ||
8 | "doi": "10.57702/1svmnj1p", | 8 | "doi": "10.57702/1svmnj1p", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Ruiqi Hu", | 15 | "extra_author": "Ruiqi Hu", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Guodong Long", | 19 | "extra_author": "Guodong Long", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Jing Jiang", | 23 | "extra_author": "Jing Jiang", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Lina Yao", | 27 | "extra_author": "Lina Yao", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Chengqi Zhang", | 31 | "extra_author": "Chengqi Zhang", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Graph Embedding", | 38 | "display_name": "Graph Embedding", | ||
39 | "id": "7ae6655a-ce6c-4d9c-bc94-6ac60da4d02c", | 39 | "id": "7ae6655a-ce6c-4d9c-bc94-6ac60da4d02c", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "graph-embedding", | 41 | "name": "graph-embedding", | ||
42 | "title": "Graph Embedding" | 42 | "title": "Graph Embedding" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "id": "a87cbcb7-e1bd-4b38-96a5-2fe94aea4516", | 45 | "id": "a87cbcb7-e1bd-4b38-96a5-2fe94aea4516", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "landing_page": "https://arxiv.org/abs/1805.07423", | 47 | "landing_page": "https://arxiv.org/abs/1805.07423", | ||
48 | "license_title": null, | 48 | "license_title": null, | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "metadata_created": "2024-12-16T18:13:55.710183", | 50 | "metadata_created": "2024-12-16T18:13:55.710183", | ||
n | 51 | "metadata_modified": "2024-12-16T18:13:55.710189", | n | 51 | "metadata_modified": "2024-12-16T18:13:56.134686", |
52 | "name": | 52 | "name": | ||
53 | "adversarially-regularized-graph-autoencoder-for-graph-embedding", | 53 | "adversarially-regularized-graph-autoencoder-for-graph-embedding", | ||
54 | "notes": "Graph embedding is an effective method to represent graph | 54 | "notes": "Graph embedding is an effective method to represent graph | ||
55 | data in a low dimensional space for graph analytics. Most existing | 55 | data in a low dimensional space for graph analytics. Most existing | ||
56 | embedding algorithms typically focus on preserving the topological | 56 | embedding algorithms typically focus on preserving the topological | ||
57 | structure or minimizing the reconstruction errors of graph data, but | 57 | structure or minimizing the reconstruction errors of graph data, but | ||
58 | they have mostly ignored the data distribution of the latent codes | 58 | they have mostly ignored the data distribution of the latent codes | ||
59 | from the graphs, which often results in inferior embedding in | 59 | from the graphs, which often results in inferior embedding in | ||
60 | real-world graph data.", | 60 | real-world graph data.", | ||
n | 61 | "num_resources": 0, | n | 61 | "num_resources": 1, |
62 | "num_tags": 3, | 62 | "num_tags": 3, | ||
63 | "organization": { | 63 | "organization": { | ||
64 | "approval_status": "approved", | 64 | "approval_status": "approved", | ||
65 | "created": "2024-11-25T12:11:38.292601", | 65 | "created": "2024-11-25T12:11:38.292601", | ||
66 | "description": "", | 66 | "description": "", | ||
67 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 67 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
68 | "image_url": "", | 68 | "image_url": "", | ||
69 | "is_organization": true, | 69 | "is_organization": true, | ||
70 | "name": "no-organization", | 70 | "name": "no-organization", | ||
71 | "state": "active", | 71 | "state": "active", | ||
72 | "title": "No Organization", | 72 | "title": "No Organization", | ||
73 | "type": "organization" | 73 | "type": "organization" | ||
74 | }, | 74 | }, | ||
75 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 75 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
76 | "private": false, | 76 | "private": false, | ||
77 | "relationships_as_object": [], | 77 | "relationships_as_object": [], | ||
78 | "relationships_as_subject": [], | 78 | "relationships_as_subject": [], | ||
t | 79 | "resources": [], | t | 79 | "resources": [ |
80 | { | ||||
81 | "cache_last_updated": null, | ||||
82 | "cache_url": null, | ||||
83 | "created": "2024-12-16T18:25:33", | ||||
84 | "data": [ | ||||
85 | "dcterms:title", | ||||
86 | "dcterms:accessRights", | ||||
87 | "dcterms:creator", | ||||
88 | "dcterms:description", | ||||
89 | "dcterms:issued", | ||||
90 | "dcterms:language", | ||||
91 | "dcterms:identifier", | ||||
92 | "dcat:theme", | ||||
93 | "dcterms:type", | ||||
94 | "dcat:keyword", | ||||
95 | "dcat:landingPage", | ||||
96 | "dcterms:hasVersion", | ||||
97 | "dcterms:format", | ||||
98 | "mls:task", | ||||
99 | "datacite:isDescribedBy" | ||||
100 | ], | ||||
101 | "description": "The json representation of the dataset with its | ||||
102 | distributions based on DCAT.", | ||||
103 | "format": "JSON", | ||||
104 | "hash": "", | ||||
105 | "id": "75254ce6-9ae3-4d90-a8c8-f86e1489a399", | ||||
106 | "last_modified": "2024-12-16T18:13:56.127445", | ||||
107 | "metadata_modified": "2024-12-16T18:13:56.137711", | ||||
108 | "mimetype": "application/json", | ||||
109 | "mimetype_inner": null, | ||||
110 | "name": "Original Metadata", | ||||
111 | "package_id": "a87cbcb7-e1bd-4b38-96a5-2fe94aea4516", | ||||
112 | "position": 0, | ||||
113 | "resource_type": null, | ||||
114 | "size": 1126, | ||||
115 | "state": "active", | ||||
116 | "url": | ||||
117 | resource/75254ce6-9ae3-4d90-a8c8-f86e1489a399/download/metadata.json", | ||||
118 | "url_type": "upload" | ||||
119 | } | ||||
120 | ], | ||||
80 | "services_used_list": "", | 121 | "services_used_list": "", | ||
81 | "state": "active", | 122 | "state": "active", | ||
82 | "tags": [ | 123 | "tags": [ | ||
83 | { | 124 | { | ||
84 | "display_name": "Adversarial Training", | 125 | "display_name": "Adversarial Training", | ||
85 | "id": "52d5c788-5c0b-445c-9cc5-2f8cfe5c0c63", | 126 | "id": "52d5c788-5c0b-445c-9cc5-2f8cfe5c0c63", | ||
86 | "name": "Adversarial Training", | 127 | "name": "Adversarial Training", | ||
87 | "state": "active", | 128 | "state": "active", | ||
88 | "vocabulary_id": null | 129 | "vocabulary_id": null | ||
89 | }, | 130 | }, | ||
90 | { | 131 | { | ||
91 | "display_name": "Graph Autoencoder", | 132 | "display_name": "Graph Autoencoder", | ||
92 | "id": "301d4443-79c0-4481-b6fa-fcdac4c76e0a", | 133 | "id": "301d4443-79c0-4481-b6fa-fcdac4c76e0a", | ||
93 | "name": "Graph Autoencoder", | 134 | "name": "Graph Autoencoder", | ||
94 | "state": "active", | 135 | "state": "active", | ||
95 | "vocabulary_id": null | 136 | "vocabulary_id": null | ||
96 | }, | 137 | }, | ||
97 | { | 138 | { | ||
98 | "display_name": "Graph Embedding", | 139 | "display_name": "Graph Embedding", | ||
99 | "id": "4548d9ac-83ce-4c21-83dd-bc31da38f7d5", | 140 | "id": "4548d9ac-83ce-4c21-83dd-bc31da38f7d5", | ||
100 | "name": "Graph Embedding", | 141 | "name": "Graph Embedding", | ||
101 | "state": "active", | 142 | "state": "active", | ||
102 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
103 | } | 144 | } | ||
104 | ], | 145 | ], | ||
105 | "title": "Adversarially Regularized Graph Autoencoder for Graph | 146 | "title": "Adversarially Regularized Graph Autoencoder for Graph | ||
106 | Embedding", | 147 | Embedding", | ||
107 | "type": "dataset", | 148 | "type": "dataset", | ||
108 | "version": "" | 149 | "version": "" | ||
109 | } | 150 | } |