Changes
On December 2, 2024 at 10:10:44 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in U-net: Convolutional networks for biomedical image segmentation -
Changed value of field
doi_date_published
to2024-12-02
in U-net: Convolutional networks for biomedical image segmentation -
Added resource Original Metadata to U-net: Convolutional networks for biomedical image segmentation
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Olaf Ronneberger", | 3 | "author": "Olaf Ronneberger", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2307.06392", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2307.06392", | ||
8 | "doi": "10.57702/6noalr7k", | 8 | "doi": "10.57702/6noalr7k", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Philipp Fischer", | 15 | "extra_author": "Philipp Fischer", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Thomas Brox", | 19 | "extra_author": "Thomas Brox", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Biomedical Image Segmentation", | 26 | "display_name": "Biomedical Image Segmentation", | ||
27 | "id": "09ae5e38-e0ad-48e4-841c-365cec85a9d3", | 27 | "id": "09ae5e38-e0ad-48e4-841c-365cec85a9d3", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "biomedical-image-segmentation", | 29 | "name": "biomedical-image-segmentation", | ||
30 | "title": "Biomedical Image Segmentation" | 30 | "title": "Biomedical Image Segmentation" | ||
31 | }, | 31 | }, | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Deep Learning", | 34 | "display_name": "Deep Learning", | ||
35 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | 35 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "deep-learning", | 37 | "name": "deep-learning", | ||
38 | "title": "Deep Learning" | 38 | "title": "Deep Learning" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Image Segmentation", | 42 | "display_name": "Image Segmentation", | ||
43 | "id": "7c8cc5f1-a9b2-4924-82ec-9e3aa3049a04", | 43 | "id": "7c8cc5f1-a9b2-4924-82ec-9e3aa3049a04", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "image-segmentation", | 45 | "name": "image-segmentation", | ||
46 | "title": "Image Segmentation" | 46 | "title": "Image Segmentation" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "2f422dc2-0f90-4d24-befa-fff37245dc76", | 49 | "id": "2f422dc2-0f90-4d24-befa-fff37245dc76", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "https://arxiv.org/abs/1606.03657", | 51 | "landing_page": "https://arxiv.org/abs/1606.03657", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2024-12-02T22:10:42.642655", | 54 | "metadata_created": "2024-12-02T22:10:42.642655", | ||
n | 55 | "metadata_modified": "2024-12-02T22:10:42.642662", | n | 55 | "metadata_modified": "2024-12-02T22:10:43.274942", |
56 | "name": | 56 | "name": | ||
57 | "u-net--convolutional-networks-for-biomedical-image-segmentation", | 57 | "u-net--convolutional-networks-for-biomedical-image-segmentation", | ||
58 | "notes": "The U-net is a deep convolutional neural network for | 58 | "notes": "The U-net is a deep convolutional neural network for | ||
59 | biomedical image segmentation.", | 59 | biomedical image segmentation.", | ||
n | 60 | "num_resources": 0, | n | 60 | "num_resources": 1, |
61 | "num_tags": 5, | 61 | "num_tags": 5, | ||
62 | "organization": { | 62 | "organization": { | ||
63 | "approval_status": "approved", | 63 | "approval_status": "approved", | ||
64 | "created": "2024-11-25T12:11:38.292601", | 64 | "created": "2024-11-25T12:11:38.292601", | ||
65 | "description": "", | 65 | "description": "", | ||
66 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 66 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
67 | "image_url": "", | 67 | "image_url": "", | ||
68 | "is_organization": true, | 68 | "is_organization": true, | ||
69 | "name": "no-organization", | 69 | "name": "no-organization", | ||
70 | "state": "active", | 70 | "state": "active", | ||
71 | "title": "No Organization", | 71 | "title": "No Organization", | ||
72 | "type": "organization" | 72 | "type": "organization" | ||
73 | }, | 73 | }, | ||
74 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 74 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
75 | "private": false, | 75 | "private": false, | ||
76 | "relationships_as_object": [], | 76 | "relationships_as_object": [], | ||
77 | "relationships_as_subject": [], | 77 | "relationships_as_subject": [], | ||
t | 78 | "resources": [], | t | 78 | "resources": [ |
79 | { | ||||
80 | "cache_last_updated": null, | ||||
81 | "cache_url": null, | ||||
82 | "created": "2024-12-02T22:29:38", | ||||
83 | "data": [ | ||||
84 | "dcterms:title", | ||||
85 | "dcterms:accessRights", | ||||
86 | "dcterms:creator", | ||||
87 | "dcterms:description", | ||||
88 | "dcterms:issued", | ||||
89 | "dcterms:language", | ||||
90 | "dcterms:identifier", | ||||
91 | "dcat:theme", | ||||
92 | "dcterms:type", | ||||
93 | "dcat:keyword", | ||||
94 | "dcat:landingPage", | ||||
95 | "dcterms:hasVersion", | ||||
96 | "dcterms:format", | ||||
97 | "mls:task", | ||||
98 | "datacite:isDescribedBy" | ||||
99 | ], | ||||
100 | "description": "The json representation of the dataset with its | ||||
101 | distributions based on DCAT.", | ||||
102 | "format": "JSON", | ||||
103 | "hash": "", | ||||
104 | "id": "baf21040-3c1d-45fb-9a2b-13cf2bc3dcf0", | ||||
105 | "last_modified": "2024-12-02T22:10:43.266715", | ||||
106 | "metadata_modified": "2024-12-02T22:10:43.277727", | ||||
107 | "mimetype": "application/json", | ||||
108 | "mimetype_inner": null, | ||||
109 | "name": "Original Metadata", | ||||
110 | "package_id": "2f422dc2-0f90-4d24-befa-fff37245dc76", | ||||
111 | "position": 0, | ||||
112 | "resource_type": null, | ||||
113 | "size": 839, | ||||
114 | "state": "active", | ||||
115 | "url": | ||||
116 | resource/baf21040-3c1d-45fb-9a2b-13cf2bc3dcf0/download/metadata.json", | ||||
117 | "url_type": "upload" | ||||
118 | } | ||||
119 | ], | ||||
79 | "services_used_list": "", | 120 | "services_used_list": "", | ||
80 | "state": "active", | 121 | "state": "active", | ||
81 | "tags": [ | 122 | "tags": [ | ||
82 | { | 123 | { | ||
83 | "display_name": "Biomedical Image Segmentation", | 124 | "display_name": "Biomedical Image Segmentation", | ||
84 | "id": "02f491e6-77c4-4661-acbf-54f503c9b68b", | 125 | "id": "02f491e6-77c4-4661-acbf-54f503c9b68b", | ||
85 | "name": "Biomedical Image Segmentation", | 126 | "name": "Biomedical Image Segmentation", | ||
86 | "state": "active", | 127 | "state": "active", | ||
87 | "vocabulary_id": null | 128 | "vocabulary_id": null | ||
88 | }, | 129 | }, | ||
89 | { | 130 | { | ||
90 | "display_name": "Deep Learning", | 131 | "display_name": "Deep Learning", | ||
91 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | 132 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | ||
92 | "name": "Deep Learning", | 133 | "name": "Deep Learning", | ||
93 | "state": "active", | 134 | "state": "active", | ||
94 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
95 | }, | 136 | }, | ||
96 | { | 137 | { | ||
97 | "display_name": "Image Segmentation", | 138 | "display_name": "Image Segmentation", | ||
98 | "id": "f5603951-aef2-4539-8066-15e72f32271b", | 139 | "id": "f5603951-aef2-4539-8066-15e72f32271b", | ||
99 | "name": "Image Segmentation", | 140 | "name": "Image Segmentation", | ||
100 | "state": "active", | 141 | "state": "active", | ||
101 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
102 | }, | 143 | }, | ||
103 | { | 144 | { | ||
104 | "display_name": "U-Net", | 145 | "display_name": "U-Net", | ||
105 | "id": "0faaa9fc-403b-44fd-adf7-a3ee0d891ed3", | 146 | "id": "0faaa9fc-403b-44fd-adf7-a3ee0d891ed3", | ||
106 | "name": "U-Net", | 147 | "name": "U-Net", | ||
107 | "state": "active", | 148 | "state": "active", | ||
108 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
109 | }, | 150 | }, | ||
110 | { | 151 | { | ||
111 | "display_name": "U-net", | 152 | "display_name": "U-net", | ||
112 | "id": "90cb06dd-39ff-435b-b52d-1afeb84b54aa", | 153 | "id": "90cb06dd-39ff-435b-b52d-1afeb84b54aa", | ||
113 | "name": "U-net", | 154 | "name": "U-net", | ||
114 | "state": "active", | 155 | "state": "active", | ||
115 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
116 | } | 157 | } | ||
117 | ], | 158 | ], | ||
118 | "title": "U-net: Convolutional networks for biomedical image | 159 | "title": "U-net: Convolutional networks for biomedical image | ||
119 | segmentation", | 160 | segmentation", | ||
120 | "type": "dataset", | 161 | "type": "dataset", | ||
121 | "version": "" | 162 | "version": "" | ||
122 | } | 163 | } |