Changes
On January 3, 2025 at 12:21:40 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Synthetic dataset D -
Changed value of field
doi_date_published
to2025-01-03
in Synthetic dataset D -
Added resource Original Metadata to Synthetic dataset D
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Yuxuan Du", | 3 | "author": "Yuxuan Du", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.1038/s41534-022-00570-y", | 7 | "defined_in": "https://doi.org/10.1038/s41534-022-00570-y", | ||
8 | "doi": "10.57702/92dbd79m", | 8 | "doi": "10.57702/92dbd79m", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2025-01-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Tao Huang", | 15 | "extra_author": "Tao Huang", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Shan You", | 19 | "extra_author": "Shan You", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Min-Hsiu Hsieh", | 23 | "extra_author": "Min-Hsiu Hsieh", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Dacheng Tao", | 27 | "extra_author": "Dacheng Tao", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [ | 31 | "groups": [ | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Machine Learning", | 34 | "display_name": "Machine Learning", | ||
35 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | 35 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "machine-learning", | 37 | "name": "machine-learning", | ||
38 | "title": "Machine Learning" | 38 | "title": "Machine Learning" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Quantum Computing", | 42 | "display_name": "Quantum Computing", | ||
43 | "id": "37f69467-8e9a-4c20-8596-191ee5661e68", | 43 | "id": "37f69467-8e9a-4c20-8596-191ee5661e68", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "quantum-computing", | 45 | "name": "quantum-computing", | ||
46 | "title": "Quantum Computing" | 46 | "title": "Quantum Computing" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "6c4c8617-5e66-49fd-aeee-474a76405b6e", | 49 | "id": "6c4c8617-5e66-49fd-aeee-474a76405b6e", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "", | 51 | "landing_page": "", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2025-01-03T00:21:38.385582", | 54 | "metadata_created": "2025-01-03T00:21:38.385582", | ||
n | 55 | "metadata_modified": "2025-01-03T00:21:38.385587", | n | 55 | "metadata_modified": "2025-01-03T00:21:38.933642", |
56 | "name": "synthetic-dataset-d", | 56 | "name": "synthetic-dataset-d", | ||
57 | "notes": "The synthetic dataset D used in the main text is | 57 | "notes": "The synthetic dataset D used in the main text is | ||
58 | constructed by generating a set of data points {x(i)} with x(i) \u2208 | 58 | constructed by generating a set of data points {x(i)} with x(i) \u2208 | ||
59 | R3. The optimal circuit is Ux = RY(x1) \u2297 RY(x2) \u2297 RY(x3). | 59 | R3. The optimal circuit is Ux = RY(x1) \u2297 RY(x2) \u2297 RY(x3). | ||
60 | The strategy to label x(i) is as follows. Let \u03a0 = I4 \u2297 | 60 | The strategy to label x(i) is as follows. Let \u03a0 = I4 \u2297 | ||
61 | |0(cid:105) (cid:104)0| be the measurement operator. The data point | 61 | |0(cid:105) (cid:104)0| be the measurement operator. The data point | ||
62 | x(i) is labeled as y(i) = 1 if (cid:104)000|U \u2020x(i)U | 62 | x(i) is labeled as y(i) = 1 if (cid:104)000|U \u2020x(i)U | ||
63 | \u2217(\u03b8\u2217)\u2020\u03a0U \u2217(\u03b8\u2217)Ux(i) | 63 | \u2217(\u03b8\u2217)\u2020\u03a0U \u2217(\u03b8\u2217)Ux(i) | ||
64 | |000(cid:105) \u2265 0.75. The label of x(i) is assigned as y(i) = 0 | 64 | |000(cid:105) \u2265 0.75. The label of x(i) is assigned as y(i) = 0 | ||
65 | if (cid:104)000|U \u2020x(i)U \u2217(\u03b8\u2217)\u2020\u03a0U | 65 | if (cid:104)000|U \u2020x(i)U \u2217(\u03b8\u2217)\u2020\u03a0U | ||
66 | \u2217(\u03b8\u2217)Ux(i) |000(cid:105) \u2264 0.25.", | 66 | \u2217(\u03b8\u2217)Ux(i) |000(cid:105) \u2264 0.25.", | ||
n | 67 | "num_resources": 0, | n | 67 | "num_resources": 1, |
68 | "num_tags": 3, | 68 | "num_tags": 3, | ||
69 | "organization": { | 69 | "organization": { | ||
70 | "approval_status": "approved", | 70 | "approval_status": "approved", | ||
71 | "created": "2024-11-25T12:11:38.292601", | 71 | "created": "2024-11-25T12:11:38.292601", | ||
72 | "description": "", | 72 | "description": "", | ||
73 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 73 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
74 | "image_url": "", | 74 | "image_url": "", | ||
75 | "is_organization": true, | 75 | "is_organization": true, | ||
76 | "name": "no-organization", | 76 | "name": "no-organization", | ||
77 | "state": "active", | 77 | "state": "active", | ||
78 | "title": "No Organization", | 78 | "title": "No Organization", | ||
79 | "type": "organization" | 79 | "type": "organization" | ||
80 | }, | 80 | }, | ||
81 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 81 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
82 | "private": false, | 82 | "private": false, | ||
83 | "relationships_as_object": [], | 83 | "relationships_as_object": [], | ||
84 | "relationships_as_subject": [], | 84 | "relationships_as_subject": [], | ||
t | 85 | "resources": [], | t | 85 | "resources": [ |
86 | { | ||||
87 | "cache_last_updated": null, | ||||
88 | "cache_url": null, | ||||
89 | "created": "2025-01-03T00:16:32", | ||||
90 | "data": [ | ||||
91 | "dcterms:title", | ||||
92 | "dcterms:accessRights", | ||||
93 | "dcterms:creator", | ||||
94 | "dcterms:description", | ||||
95 | "dcterms:issued", | ||||
96 | "dcterms:language", | ||||
97 | "dcterms:identifier", | ||||
98 | "dcat:theme", | ||||
99 | "dcterms:type", | ||||
100 | "dcat:keyword", | ||||
101 | "dcat:landingPage", | ||||
102 | "dcterms:hasVersion", | ||||
103 | "dcterms:format", | ||||
104 | "mls:task", | ||||
105 | "datacite:isDescribedBy" | ||||
106 | ], | ||||
107 | "description": "The json representation of the dataset with its | ||||
108 | distributions based on DCAT.", | ||||
109 | "format": "JSON", | ||||
110 | "hash": "", | ||||
111 | "id": "48da3d9d-cd1b-4445-b973-289d654a37a7", | ||||
112 | "last_modified": "2025-01-03T00:21:38.925965", | ||||
113 | "metadata_modified": "2025-01-03T00:21:38.936773", | ||||
114 | "mimetype": "application/json", | ||||
115 | "mimetype_inner": null, | ||||
116 | "name": "Original Metadata", | ||||
117 | "package_id": "6c4c8617-5e66-49fd-aeee-474a76405b6e", | ||||
118 | "position": 0, | ||||
119 | "resource_type": null, | ||||
120 | "size": 1226, | ||||
121 | "state": "active", | ||||
122 | "url": | ||||
123 | resource/48da3d9d-cd1b-4445-b973-289d654a37a7/download/metadata.json", | ||||
124 | "url_type": "upload" | ||||
125 | } | ||||
126 | ], | ||||
86 | "services_used_list": "", | 127 | "services_used_list": "", | ||
87 | "state": "active", | 128 | "state": "active", | ||
88 | "tags": [ | 129 | "tags": [ | ||
89 | { | 130 | { | ||
90 | "display_name": "Machine learning", | 131 | "display_name": "Machine learning", | ||
91 | "id": "7c8050e7-2e86-4a96-aebe-6c582621940d", | 132 | "id": "7c8050e7-2e86-4a96-aebe-6c582621940d", | ||
92 | "name": "Machine learning", | 133 | "name": "Machine learning", | ||
93 | "state": "active", | 134 | "state": "active", | ||
94 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
95 | }, | 136 | }, | ||
96 | { | 137 | { | ||
97 | "display_name": "Quantum computing", | 138 | "display_name": "Quantum computing", | ||
98 | "id": "d10aa058-c6c5-49d6-901d-1460eca5126e", | 139 | "id": "d10aa058-c6c5-49d6-901d-1460eca5126e", | ||
99 | "name": "Quantum computing", | 140 | "name": "Quantum computing", | ||
100 | "state": "active", | 141 | "state": "active", | ||
101 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
102 | }, | 143 | }, | ||
103 | { | 144 | { | ||
104 | "display_name": "Synthetic dataset", | 145 | "display_name": "Synthetic dataset", | ||
105 | "id": "23852e66-6846-4906-8126-937b64f02ee9", | 146 | "id": "23852e66-6846-4906-8126-937b64f02ee9", | ||
106 | "name": "Synthetic dataset", | 147 | "name": "Synthetic dataset", | ||
107 | "state": "active", | 148 | "state": "active", | ||
108 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
109 | } | 150 | } | ||
110 | ], | 151 | ], | ||
111 | "title": "Synthetic dataset D", | 152 | "title": "Synthetic dataset D", | ||
112 | "type": "dataset", | 153 | "type": "dataset", | ||
113 | "version": "" | 154 | "version": "" | ||
114 | } | 155 | } |